Quantifying Chaos, Correlations, and Oscillations in Multi-Agent Systems and Advection Equations

量化多智能体系统和平流方程中的混沌、相关性和振荡

基本信息

项目摘要

The project studies transport and advection equations with applications in the Biosciences, Statistical Physics and Fluid Mechanics. A first guiding example for the research includes large systems of interacting "agents" or "particles" that have long been employed in Physics: in Astrophysics to predict the evolution in time of galaxies or galaxy clusters to try to understand how they are formed, in plasmas to describe the dynamics of ions and electrons in plasmas, to model the behavior of air bubbles in water or other small objects in a fluid. In addition, such large systems are now widely used in Biology to model the motion of micro-organisms ("particles" can then be cells in the human body), in Finance and Economics, and other Social Sciences. A second guiding set of examples is composed of various fluid models (liquid or gas) which can exhibit complex compressive effects commonly found in geophysical (oceans or atmosphere) or biological settings. The project aims at deriving and validating effective models: By reducing the complexity of large systems of agents/particles through the so-called mean-field limit, or by controlling the behavior of effective state laws in Fluid Mechanics that are a priori unstable.The models investigated in this research all employ transport equations: non-linear convection systems in low dimension for compressible fluids, the linear Liouville equation in very large dimension for simple multi-agent systems but more also more complex non-linear equations (such as Hamilton-Jacobi-Bellman) for systems with control. The project focuses in particular on systems that are unstable or singular and are expected to create or amplify correlations and oscillations. A key unifying question in the research is to identify the critical scale in the models to quantify how those correlations or oscillations may develop. For large systems of particles, the project makes use of explicit estimates involving the rescaled relative entropy, renormalized to include the comparisons between the Gibbs equilibria. For convective models, the project introduces new semi-norms which precisely track the possible oscillations in the density at the critical log or log log scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究输运和平流方程及其在生物科学、统计物理和流体力学中的应用。该研究的第一个指导性例子包括长期在物理学中使用的相互作用“代理”或“粒子”的大型系统:在天体物理学中预测星系或星系团随时间的演化,以试图了解它们是如何形成的,在等离子体来描述等离子体中离子和电子的动力学,模拟水中气泡或流体中其他小物体的行为。 此外,这种大型系统现在广泛应用于生物学、金融和经济学以及其他社会科学领域,以模拟微生物的运动(“粒子”可以是人体中的细胞)。第二组指导示例由各种流体模型(液体或气体)组成,这些模型可以表现出地球物理(海洋或大气)或生物环境中常见的复杂压缩效应。该项目旨在推导和验证有效的模型:通过所谓的平均场极限降低大型代理/粒子系统的复杂性,或者通过控制先验不稳定的流体力学中有效状态定律的行为。本研究中研究的模型都采用传输方程:可压缩流体的低维非线性对流系统,简单多智能体系统的大维线性刘维尔方程,但也有更复杂的非线性方程(例如Hamilton-Jacobi-Bellman)用于带控制的系统。该项目特别关注不稳定或奇异的系统,并预计会产生或放大相关性和振荡。研究中的一个关键统一问题是确定模型中的临界尺度,以量化这些相关性或振荡可能如何发展。对于大型粒子系统,该项目利用涉及重新调整的相对熵的显式估计,重新归一化以包括吉布斯平衡之间的比较。对于对流模型,该项目引入了新的半范数,可以精确跟踪临界对数或对数对数尺度上密度可能的振荡。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和评估进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transport model for feature extraction.
用于特征提取的传输模型。
Memory-driven movement model for periodic migrations
用于周期性迁移的内存驱动运动模型
Analysis of Hyperspectral Data by Means of Transport Models and Machine Learning
通过传输模型和机器学习分析高光谱数据
Local regularity result for an optimal transportation problem with rough measures in the plane.
局部规律性导致了平面上粗略措施的最优运输问题。
Global weak solutions to the relativistic BGK equation
相对论 BGK 方程的全局弱解
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pierre-Emmanuel Jabin其他文献

Time-asymptotic convergence rates towards discrete steady states of nonlocal selection-mutation model
非局部选择变异模型离散稳态的时间渐近收敛率

Pierre-Emmanuel Jabin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pierre-Emmanuel Jabin', 18)}}的其他基金

Charting a New Paradigm for Large Non-Exchangeable Multi-Agent and Many-Particle Systems
为大型不可交换多代理和多粒子系统绘制新范式
  • 批准号:
    2205694
  • 财政年份:
    2022
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219397
  • 财政年份:
    2022
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Standard Grant
Charting a New Paradigm for Large Non-Exchangeable Multi-Agent and Many-Particle Systems
为大型不可交换多代理和多粒子系统绘制新范式
  • 批准号:
    2205694
  • 财政年份:
    2022
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Standard Grant
Quantifying Chaos, Correlations, and Oscillations in Multi-Agent Systems and Advection Equations
量化多智能体系统和平流方程中的混沌、相关性和振荡
  • 批准号:
    2049020
  • 财政年份:
    2020
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Standard Grant
A novel paradigm for nonlinear convection models and large systems of particles
非线性对流模型和大型粒子系统的新范例
  • 批准号:
    1614537
  • 财政年份:
    2016
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Standard Grant
A novel paradigm for nonlinear convection models and large systems of particles
非线性对流模型和大型粒子系统的新范例
  • 批准号:
    1614537
  • 财政年份:
    2016
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Standard Grant
Many Particles' Systems: Theory and Applications
多粒子系统:理论与应用
  • 批准号:
    1312142
  • 财政年份:
    2013
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

腈水解酶催化混乱性分子机制解析与反应专一性理性设计
  • 批准号:
    21978269
  • 批准年份:
    2019
  • 资助金额:
    66 万元
  • 项目类别:
    面上项目
时空大数据可视分析中信息混淆问题研究
  • 批准号:
    61872066
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
混沌保密通信若干基础问题研究
  • 批准号:
    61073187
  • 批准年份:
    2010
  • 资助金额:
    11.0 万元
  • 项目类别:
    面上项目
解微分变分不等式的数值方法及应用
  • 批准号:
    11071122
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
消除“车辆混乱”假设的交通流中观模型研究
  • 批准号:
    71071024
  • 批准年份:
    2010
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

非平衡な気相自由乱流中でのスカラ散逸機構の解明と分子混合のモデル化に関する研究
非平衡气相自由湍流中标量耗散机制的阐明和分子混合建模研究
  • 批准号:
    24K07311
  • 财政年份:
    2024
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
社会混乱下における教育と医療の連携構築に関する探索
社会动荡下教育与医疗合作探索
  • 批准号:
    24K06302
  • 财政年份:
    2024
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CloudEnergyBalance: Simple climate models to quantify impact of large-scale cloudiness & deterministic chaos on climatic variability & tipping points
CloudEnergyBalance:用于量化大规模多云影响的简单气候模型
  • 批准号:
    EP/Y01653X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Fellowship
Study on liquid water content fluctuation in high Reynolds number turbulence with large-scale mixing in convective clouds
对流云大尺度混合高雷诺数湍流中液态水含量波动研究
  • 批准号:
    23K03686
  • 财政年份:
    2023
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Dynamics and Quantum Chaos
量子动力学和量子混沌
  • 批准号:
    2894416
  • 财政年份:
    2023
  • 资助金额:
    $ 38.3万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了