CNS Core: Small: Collaborative Research: HEECMA: A Hybrid Elastic Edge-Cloud Application Management Architecture

CNS 核心:小型:协作研究:HEECMA:混合弹性边缘云应用管理架构

基本信息

  • 批准号:
    1908574
  • 负责人:
  • 金额:
    $ 20.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Application software is becoming increasingly abundant in functionality and increasingly demanding of resources, e.g., memory and compute power. This project examines how application software, e.g., a Virtual Reality (VR) based drone control application, can be partitioned and deployed over different parts of a distributed computing infrastructure, i.e., resources are managed by a hybrid of service and cloud providers. Research questions that will be answered include: what is the best partitioning of the application that balances compute and memory demand for each application component (function) and the communication needs between these functions? Which provider should be used for each application function so that it runs quickly at the lowest cost? Moreover, how should the system adapt to changes in the availability of resources to maintain a high level of quality of experience for users?The project will develop the theoretical foundations of decomposing applications over a distributed complex cyberinfrastructure. We will study various decompositions and corresponding virtualization and resource allocation services offered by different providers with resources at the edge of the infrastructure, i.e., closer to users, and at the core, i.e., deeper into the infrastructure. The goal is to find the "best" decomposition to meet users' quality of experience while reducing the cost/price for the users. The decomposed (distributed) solution will be realized by employing corresponding feedback control algorithms and game-theoretic incentives. The project will then experiment with three classes of applications to validate these theoretical foundations: streaming Augmented/Virtual Reality (AR/VR), intrusion detection, and spatiotemporal ecological forecasting. Toward this end, a prototype will be developed and evaluated over existing open cloud infrastructures (e.g., GENI, CloudLab, Chameleon), commercial clouds, as well as private clouds (e.g., Massachusetts Open Cloud).This project will advance the state of the art in the area of application software decomposition and deployment over large-scale hybrid cloud infrastructures. The theoretical foundations and experimental validation of the work will inform the design and deployment of other foreseen and unforeseen applications. The performance and cost gains will translate to more efficient use of resources and consequently, a society that is better connected and greener. Outreach efforts will include several activities: (1) the development and delivery of hands-on tutorials that involve partitioning and running application software over a distributed cyberinfrastructure managed by multiple providers, (2) the organization of annual summer camps on cyberinfrastructure operations and management for high school students, and (3) the training and mentoring of minority and under-represented students working on research related to this project. The project will maintain a website at http://csr.bu.edu/heecma for the duration of this grant and beyond. The website will contain all the publications and results of this project in the form of code, prototype, and tutorials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
应用软件的功能越来越丰富,对内存和计算能力等资源的要求也越来越高。该项目研究了应用软件(例如基于虚拟现实(VR)的无人机控制应用程序)如何在分布式计算基础设施的不同部分上进行分区和部署,即资源由服务和云提供商的混合体进行管理。将回答的研究问题包括:平衡每个应用程序组件(功能)的计算和内存需求以及这些功能之间的通信需求的应用程序的最佳分区是什么?每个应用程序功能应该使用哪个提供商,以便以最低的成本快速运行?此外,系统应如何适应资源可用性的变化,以保持用户的高水平体验质量?该项目将开发在分布式复杂网络基础设施上分解应用程序的理论基础。我们将研究不同提供商提供的各种分解和相应的虚拟化和资源分配服务,资源位于基础设施边缘(即更靠近用户)和核心(即更深入基础设施)。目标是找到“最佳”分解以满足用户的体验质量,同时降低用户的成本/价格。分解(分布式)解决方案将通过采用相应的反馈控制算法和博弈论激励来实现。 然后,该项目将尝试三类应用程序来验证这些理论基础:流媒体增强/虚拟现实(AR/VR)、入侵检测和时空生态预测。为此,将在现有的开放云基础设施(例如 GENI、CloudLab、Chameleon)、商业云以及私有云(例如马萨诸塞州开放云)上开发和评估原型。该项目将推进应用软件分解和大规模混合云基础设施部署领域的艺术。 这项工作的理论基础和实验验证将为其他可预见和不可预见的应用程序的设计和部署提供信息。性能和成本收益将转化为更有效地利用资源,从而形成一个更加互联和更加绿色的社会。外展工作将包括几项活动:(1) 开发和提供实践教程,其中涉及在由多个提供商管理的分布式网络基础设施上分区和运行应用程序软件,(2) 组织关于网络基础设施运营和管理的年度夏令营高中生,以及 (3) 培训和指导从事与本项目相关研究的少数族裔和代表性不足的学生。在本次拨款期间及之后,该项目将维护一个网站:http://csr.bu.edu/heecma。该网站将以代码、原型和教程的形式包含该项目的所有出版物和结果。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Routing with Graph Convolutional Networks and Multi-Agent Deep Reinforcement Learning
使用图卷积网络和多代理深度强化学习进行路由
Partially Oblivious Congestion Control for the Internet via Reinforcement Learning
通过强化学习实现部分不经意的互联网拥塞控制
A Collaborative and Distributed Learning-Based Solution to Autonomously Plan Computer Networks
用于自主规划计算机网络的基于协作和分布式学习的解决方案
Howdah: Load Profiling via In-Band Flow Classification and P4
Howdah:通过带内流量分类和 P4 进行负载分析
  • DOI:
    10.23919/cnsm55787.2022.9964510
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Angi, Antonino;Sacco, Alessio;Esposito, Flavio;Marchetto, Guido;Clemm, Alexander
  • 通讯作者:
    Clemm, Alexander
ASAP: Adaptive and Scalable Microservice Provisioning for Edge-IoT Networks
ASAP:边缘物联网网络的自适应和可扩展微服务配置
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Flavio Esposito其他文献

Maximal Labelled-Clique and Click-Biclique Problems for Networked Community Detection
网络社区检测的最大标记团和点击双团问题
Repository ISTITUZIONALE
存储库 ISTITUZIONALE
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Castellano;Flavio Esposito;Fulvio Risso
  • 通讯作者:
    Fulvio Risso
Energy-Efficient Uncertainty-Aware Biomass Composition Prediction at the Edge
边缘的节能不确定性感知生物质成分预测
  • DOI:
    10.48550/arxiv.2404.11230
  • 发表时间:
    2024-04-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muhammad Zawish;Paul Albert;Flavio Esposito;Steven Davy;Lizy Abraham
  • 通讯作者:
    Lizy Abraham
On supporting mobility and multihoming in recursive internet architectures
关于在递归互联网架构中支持移动性和多宿主
  • DOI:
    10.1016/j.comcom.2012.04.027
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vatche Isahagian;J. Akinwumi;Flavio Esposito;I. Matta
  • 通讯作者:
    I. Matta
RLVNA: a Platform for Experimenting with Virtual Networks Adaptations over Public Testbeds
RLVNA:通过公共测试平台进行虚拟网络适应试验的平台

Flavio Esposito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Flavio Esposito', 18)}}的其他基金

CC* Integration-Small: A Software-Defined Edge Infrastructure Testbed for Full-stack Data-Driven Wireless Network Applications
CC* Integration-Small:用于全栈数据驱动无线网络应用的软件定义边缘基础设施测试台
  • 批准号:
    2201536
  • 财政年份:
    2022
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: TTP Option: Medium: Sharing Farm Intelligence via Edge Computing
协作研究:CPS:TTP 选项:中:通过边缘计算共享农场情报
  • 批准号:
    2133407
  • 财政年份:
    2022
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for the 2019 ACM CoNEXT Conference
2019 年 ACM CoNEXT 会议 NSF 学生旅费补助金
  • 批准号:
    2002096
  • 财政年份:
    2019
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
ICE-T: RI: A Knowledge-Defined Platform for Real-Time Management of Transmissions and Computations at Network Edge
ICE-T:RI:用于网络边缘传输和计算实时管理的知识定义平台
  • 批准号:
    1836906
  • 财政年份:
    2018
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
US Ignite: Collaborative Research: Focus Area 2: Resilient Virtual Path Management for Scalable Data-intensive Computing at Network-Edges
US Ignite:协作研究:重点领域 2:网络边缘可扩展数据密集型计算的弹性虚拟路径管理
  • 批准号:
    1647084
  • 财政年份:
    2017
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant

相似国自然基金

基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
  • 批准号:
    82303969
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
  • 批准号:
    82301603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
  • 批准号:
    82301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
  • 批准号:
    82304474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
  • 批准号:
    2229454
  • 财政年份:
    2023
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
  • 批准号:
    2400463
  • 财政年份:
    2023
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了