Precision Measurement and Modeling of Dynamic Millimeter-wave Wireless Propagation Channels

动态毫米波无线传播信道的精密测量和建模

基本信息

  • 批准号:
    1926913
  • 负责人:
  • 金额:
    $ 39.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

One of the defining features of 5G communications is the use of frequency bands in the mm-wave range. The ample available bandwidth has the potential to enable dramatically higher data rates, thus enabling a plethora of new applications, ranging from improved video streaming to virtual reality to industrial monitoring and control. However, to properly assess the potential and limitations of such mm-wave systems, it is required to first understand the propagation channel, i.e., the way in which signals propagate from the transmitter to the receiver. Since the fundamental propagation effects such as diffraction and scattering are significantly different at higher frequencies, the overall propagation channel can be expected to be different from the well-explored channels at traditional cellular frequencies. The proposed project will provide a detailed, measurement-based description of mm-wave propagation channels, with special emphasis on the time variations that are created by moving objects (cars, humans, machinery) in the environment. From such understanding, it is possible to obtain insights in how to design more reliable, and more efficient, mm-wave communications systems. Due to the great importance of mm-wave communication, a number of measurements do exist for mm-wave channels, but they show serious restrictions. In particular, no measurements are available that simultaneously (i) provide directional information with high resolution, (ii) are dynamic, i.e., show the impact of moving devices or scattering objects, and (iii) provide a statistically significant number of measurement points that could form a reliable basis of stochastic channel models, or training for machine learning. Because of a lack of measurement results, many assumptions that are used in the development of 5G devices and systems are conjectures, which this project aims to prove or disprove. To achieve this, this project will use a novel channel sounder recently developed at University of Southern California and extend its capabilities through advanced signal processing techniques. This channel sounder is based on the principle of fast beamswitching, which enables high equivalent isotropically radiated power (EIRP) and capturing complete directional channel characteristics within a short time (10ms). Using this sounder, the project will perform and evaluate extensive measurement campaigns, some of which will concentrate on dynamic effects and nonstationarities, while others will exploit the capability for measuring and evaluating massive amount of data. Compared to widely cited existing measurements, the new measurements can be done one million times faster, and three orders of magnitude more measurement locations. Another important result of the project will be the development of new channel models that can reflect all of the relevant channel properties for theoretical analysis as well as system design. By paying attention to the spatial consistency of the results, and analyzing the number and amplitude distribution of the multipath components, better deployment planning, and impact on system performance such as prediction of various beamformer architectures will be enabled.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
5G通信的定义特征之一是在MM波范围内使用频段。充足的带宽有可能使较高的数据速率启用,从而实现了大量新应用程序,从改进的视频流到虚拟现实到工业监控和控制。但是,要正确评估此类MM波系统的潜在和局限性,首先需要了解传播通道,即信号从发射器传播到接收器的方式。由于在较高频率下的基本传播效应(例如衍射和散射)显着不同,因此可以预期总体传播通道与传统细胞频率下的探索通道有所不同。拟议的项目将对MM波传播渠道提供详细的,基于测量的描述,并特别强调通过环境中移动对象(汽车,人类,机械)创建的时间变化。从这种理解中,可以获得有关如何设计更可靠,更高效的MM波通信系统的见解。由于MM波交流的重要性,因此确实存在许多MM波渠道的测量值,但它们显示出严重的限制。特别是,没有测量可以同时(i)提供具有高分辨率的方向信息,(ii)是动态的,即显示移动设备或散射对象的影响,并且(iii)(iii)在统计上提供了一定数量的测量点,这些测量点可以形成可靠的随机通道模型或机器学习的训练。由于缺乏测量结果,在5G设备和系统开发中使用的许多假设都是猜想,该项目旨在证明或反驳。为了实现这一目标,该项目将使用最近在南加州大学开发的新型频道声音,并通过先进的信号处理技术扩展其功能。该通道探测器基于快速光束开关的原理,该原理可以在短时间内(10ms)内(10ms)内捕获高等同的各向同性辐射功率(EIRP)并捕获完整的方向通道特性。使用此声音,该项目将执行和评估广泛的测量活动,其中一些将集中于动态效应和非组织性,而其他项目将利用测量和评估大量数据的能力。与广泛引用的现有测量值相比,新的测量结果可以更快地进行一百万倍,三个数量级的测量位置。该项目的另一个重要结果是开发新的渠道模型,这些模型可以反映理论分析和系统设计的所有相关渠道属性。通过关注结果的空间一致性,并分析多径组件的数量和振幅分布,更好的部署计划以及对系统性能的影响,例如对各种波束形式体系结构的预测,将启用该奖项。该奖项反映了NSF的立法任务,并被认为是通过基金会的智力优点和广泛的范围来评估的,并且值得通过评估来进行评估。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling Super-Resolution Parameter Estimation for mm-Wave Channel Sounding
实现毫米波通道探测的超分辨率参数估计
  • DOI:
    10.1109/twc.2020.2970401
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Wang, Rui;Bas, Celalettin Umit;Cheng, Zihang;Choi, Thomas;Feng, Hao;Li, Zheda;Ye, Xiaokang;Tang, Pan;Sangodoyin, Seun;Gomez-Ponce, Jorge
  • 通讯作者:
    Gomez-Ponce, Jorge
Line-of-Sight Probability in Cluttered Urban Microcells: Analyses Using Poisson Point Process and Point Cloud
Methodology for Benchmarking Radio-Frequency Channel Sounders through a System Model
通过系统模型对射频通道探测仪进行基准测试的方法
Standardization of Propagation Models for Terrestrial Cellular Systems: A Historical Perspective
Analysis of the Multipath Effect of Human Presence on Indoor 60 GHz Wireless Channels
室内 60 GHz 无线信道上人体存在的多径效应分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Molisch其他文献

Andreas Molisch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Molisch', 18)}}的其他基金

CIF: Small: Impact of radiation trapping on sensing and communication systems in the THz, infrared, and optical regime - foundations, challenges, and opportunities
CIF:小:辐射捕获对太赫兹、红外和光学领域传感和通信系统的影响 - 基础、挑战和机遇
  • 批准号:
    2320937
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
NSF-IITP: CNS Core: Small: Federated Learning for Privacy-preserving Video Caching Network
NSF-IITP:CNS 核心:小型:隐私保护视频缓存网络的联邦学习
  • 批准号:
    2152646
  • 财政年份:
    2022
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
NSF-AoF: Impact of user, environment, and artificial surfaces on above-100 GHz wireless communications
NSF-AoF:用户、环境和人造表面对 100 GHz 以上无线通信的影响
  • 批准号:
    2133655
  • 财政年份:
    2022
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
RINGS: Resilient Delivery of Real-Time Interactive Services Over NextG Compute-Dense Mobile Networks
RINGS:通过 NextG 计算密集型移动网络弹性交付实时交互服务
  • 批准号:
    2148315
  • 财政年份:
    2022
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Localization in Millimeter Wave Cellular Networks: Fundamentals, Algorithms, and Measurement-inspired Simulator
合作研究: CNS 核心:媒介:毫米波蜂窝网络的本地化:基础知识、算法和测量启发的模拟器
  • 批准号:
    2106602
  • 财政年份:
    2021
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Continuing Grant
CIF: Small: Machine Learning for Wireless Propagation Channels
CIF:小型:无线传播通道的机器学习
  • 批准号:
    2008443
  • 财政年份:
    2020
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: DroTerNet: Coexistence between Drone and Terrestrial Wireless Networks
SpecEES:协作研究:DroTerNet:无人机与地面无线网络的共存
  • 批准号:
    1923601
  • 财政年份:
    2019
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
NeTS: Small: Optimal Delivery of Augmented Information Services Over Next-Generation Cloud Networks
NeTS:小型:通过下一代云网络优化增强信息服务交付
  • 批准号:
    1816699
  • 财政年份:
    2018
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: Stochastic Geometry Meets Channel Measurements: Comprehensive Modeling, Analysis,Fundamental Design-tradeoffs in Real-world Massive-MIMO Networks
SpecEES:协作研究:随机几何满足信道测量:现实世界大规模 MIMO 网络中的综合建模、分析、基本设计权衡
  • 批准号:
    1731694
  • 财政年份:
    2017
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
CIF Small: Massive MIMO in the MM-Wave Range: The Theory of Making it Practical
CIF Small:毫米波范围内的大规模 MIMO:使其实用的理论
  • 批准号:
    1618078
  • 财政年份:
    2016
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于电荷诱导红外光响应法的表面电荷瞬态测量及其诱发沿面放电机制
  • 批准号:
    52377143
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于金刚石中NV色心的活体细胞内高灵敏与高分辨温度测量的研究
  • 批准号:
    62305241
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于晶体内精密超声行波构建理论的大量程纳米位移测量方法
  • 批准号:
    52375526
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
企业数字导向的测量、前因组态及其对颠覆式创新影响研究
  • 批准号:
    72302110
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
表界面微观振子的光谱学精密测量与功能开发
  • 批准号:
    22333004
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目

相似海外基金

EFFICIENT DIFFERENTIATION, SCALE-UP, AND MATURATION OF IPS DERIVED CARDIOMYOCYTES
IPS 来源的心肌细胞的有效分化、放大和成熟
  • 批准号:
    10761485
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
  • 批准号:
    10722011
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
Improving Prediction of Asthma-related Outcomes with Genetic Ancestry-informed Lung Function Equations
利用遗传祖先信息的肺功能方程改善哮喘相关结果的预测
  • 批准号:
    10723861
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
Teen screen diets and their relationships with dietary intake: setting the stage for precision interventions and evidence-based policies
青少年筛查饮食及其与饮食摄入的关系:为精准干预和循证政策奠定基础
  • 批准号:
    10718906
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了