Precision Measurement and Modeling of Dynamic Millimeter-wave Wireless Propagation Channels

动态毫米波无线传播信道的精密测量和建模

基本信息

  • 批准号:
    1926913
  • 负责人:
  • 金额:
    $ 39.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

One of the defining features of 5G communications is the use of frequency bands in the mm-wave range. The ample available bandwidth has the potential to enable dramatically higher data rates, thus enabling a plethora of new applications, ranging from improved video streaming to virtual reality to industrial monitoring and control. However, to properly assess the potential and limitations of such mm-wave systems, it is required to first understand the propagation channel, i.e., the way in which signals propagate from the transmitter to the receiver. Since the fundamental propagation effects such as diffraction and scattering are significantly different at higher frequencies, the overall propagation channel can be expected to be different from the well-explored channels at traditional cellular frequencies. The proposed project will provide a detailed, measurement-based description of mm-wave propagation channels, with special emphasis on the time variations that are created by moving objects (cars, humans, machinery) in the environment. From such understanding, it is possible to obtain insights in how to design more reliable, and more efficient, mm-wave communications systems. Due to the great importance of mm-wave communication, a number of measurements do exist for mm-wave channels, but they show serious restrictions. In particular, no measurements are available that simultaneously (i) provide directional information with high resolution, (ii) are dynamic, i.e., show the impact of moving devices or scattering objects, and (iii) provide a statistically significant number of measurement points that could form a reliable basis of stochastic channel models, or training for machine learning. Because of a lack of measurement results, many assumptions that are used in the development of 5G devices and systems are conjectures, which this project aims to prove or disprove. To achieve this, this project will use a novel channel sounder recently developed at University of Southern California and extend its capabilities through advanced signal processing techniques. This channel sounder is based on the principle of fast beamswitching, which enables high equivalent isotropically radiated power (EIRP) and capturing complete directional channel characteristics within a short time (10ms). Using this sounder, the project will perform and evaluate extensive measurement campaigns, some of which will concentrate on dynamic effects and nonstationarities, while others will exploit the capability for measuring and evaluating massive amount of data. Compared to widely cited existing measurements, the new measurements can be done one million times faster, and three orders of magnitude more measurement locations. Another important result of the project will be the development of new channel models that can reflect all of the relevant channel properties for theoretical analysis as well as system design. By paying attention to the spatial consistency of the results, and analyzing the number and amplitude distribution of the multipath components, better deployment planning, and impact on system performance such as prediction of various beamformer architectures will be enabled.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
5G 通信的定义特征之一是使用毫米波范围内的频段。充足的可用带宽有可能显着提高数据速率,从而实现大量新应用,从改进的视频流到虚拟现实,再到工业监控。然而,为了正确评估此类毫米波系统的潜力和局限性,需要首先了解传播通道,即信号从发射器传播到接收器的方式。由于衍射和散射等基本传播效应在较高频率下显着不同,因此预计总体传播信道将不同于传统蜂窝频率下已充分探索的信道。拟议的项目将对毫米波传播通道提供基于测量的详细描述,特别强调环境中移动物体(汽车、人类、机械)产生的时间变化。通过这种理解,可以获得如何设计更可靠、更高效的毫米波通信系统的见解。由于毫米波通信的重要性,毫米波信道确实存在多种测量方法,但它们显示出严重的限制。特别是,没有可用的测量同时(i)提供高分辨率的方向信息,(ii)是动态的,即显示移动设备或散射物体的影响,以及(iii)提供统计上显着数量的测量点可以形成随机通道模型或机器学习训练的可靠基础。由于缺乏测量结果,5G设备和系统开发中使用的许多假设都是猜想,本项目旨在证明或反驳这些猜想。为了实现这一目标,该项目将使用南加州大学最近开发的新型通道探测仪,并通过先进的信号处理技术扩展其功能。该通道探测仪基于快速波束切换原理,可实现高等效各向同性辐射功率(EIRP)并在短时间内(10ms)捕获完整的定向通道特性。使用该发声器,该项目将执行和评估广泛的测量活动,其中一些活动将集中于动态效应和非平稳性,而其他活动将利用测量和评估大量数据的能力。与广泛引用的现有测量相比,新的测量速度可以快一百万倍,并且测量位置可以增加三个数量级。该项目的另一个重要成果将是开发新的渠道模型,该模型可以反映理论分析和系统设计的所有相关渠道属性。通过关注结果的空间一致性,并分析多径分量的数量和幅度分布,将能够实现更好的部署规划以及对系统性能的影响,例如预测各种波束形成器架构。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling Super-Resolution Parameter Estimation for mm-Wave Channel Sounding
实现毫米波通道探测的超分辨率参数估计
  • DOI:
    10.1109/twc.2020.2970401
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Wang, Rui;Bas, Celalettin Umit;Cheng, Zihang;Choi, Thomas;Feng, Hao;Li, Zheda;Ye, Xiaokang;Tang, Pan;Sangodoyin, Seun;Gomez-Ponce, Jorge
  • 通讯作者:
    Gomez-Ponce, Jorge
Line-of-Sight Probability in Cluttered Urban Microcells: Analyses Using Poisson Point Process and Point Cloud
Methodology for Benchmarking Radio-Frequency Channel Sounders through a System Model
通过系统模型对射频通道探测仪进行基准测试的方法
Standardization of Propagation Models for Terrestrial Cellular Systems: A Historical Perspective
Analysis of the Multipath Effect of Human Presence on Indoor 60 GHz Wireless Channels
室内 60 GHz 无线信道上人体存在的多径效应分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Molisch其他文献

Andreas Molisch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Molisch', 18)}}的其他基金

CIF: Small: Impact of radiation trapping on sensing and communication systems in the THz, infrared, and optical regime - foundations, challenges, and opportunities
CIF:小:辐射捕获对太赫兹、红外和光学领域传感和通信系统的影响 - 基础、挑战和机遇
  • 批准号:
    2320937
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
NSF-IITP: CNS Core: Small: Federated Learning for Privacy-preserving Video Caching Network
NSF-IITP:CNS 核心:小型:隐私保护视频缓存网络的联邦学习
  • 批准号:
    2152646
  • 财政年份:
    2022
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
NSF-AoF: Impact of user, environment, and artificial surfaces on above-100 GHz wireless communications
NSF-AoF:用户、环境和人造表面对 100 GHz 以上无线通信的影响
  • 批准号:
    2133655
  • 财政年份:
    2022
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
RINGS: Resilient Delivery of Real-Time Interactive Services Over NextG Compute-Dense Mobile Networks
RINGS:通过 NextG 计算密集型移动网络弹性交付实时交互服务
  • 批准号:
    2148315
  • 财政年份:
    2022
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Localization in Millimeter Wave Cellular Networks: Fundamentals, Algorithms, and Measurement-inspired Simulator
合作研究: CNS 核心:媒介:毫米波蜂窝网络的本地化:基础知识、算法和测量启发的模拟器
  • 批准号:
    2106602
  • 财政年份:
    2021
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Continuing Grant
CIF: Small: Machine Learning for Wireless Propagation Channels
CIF:小型:无线传播通道的机器学习
  • 批准号:
    2008443
  • 财政年份:
    2020
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: DroTerNet: Coexistence between Drone and Terrestrial Wireless Networks
SpecEES:协作研究:DroTerNet:无人机与地面无线网络的共存
  • 批准号:
    1923601
  • 财政年份:
    2019
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
NeTS: Small: Optimal Delivery of Augmented Information Services Over Next-Generation Cloud Networks
NeTS:小型:通过下一代云网络优化增强信息服务交付
  • 批准号:
    1816699
  • 财政年份:
    2018
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: Stochastic Geometry Meets Channel Measurements: Comprehensive Modeling, Analysis,Fundamental Design-tradeoffs in Real-world Massive-MIMO Networks
SpecEES:协作研究:随机几何满足信道测量:现实世界大规模 MIMO 网络中的综合建模、分析、基本设计权衡
  • 批准号:
    1731694
  • 财政年份:
    2017
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant
CIF Small: Massive MIMO in the MM-Wave Range: The Theory of Making it Practical
CIF Small:毫米波范围内的大规模 MIMO:使其实用的理论
  • 批准号:
    1618078
  • 财政年份:
    2016
  • 资助金额:
    $ 39.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于瞬态成像响应的非同步相移轮廓术三维测量方法研究
  • 批准号:
    62375078
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
因果推断驱动的间歇过程稳定软测量方法研究
  • 批准号:
    62373036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高温环境复杂形貌激光投影散斑三维测量关键技术研究
  • 批准号:
    52375536
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于微区光电性能测量技术的红光微型量子点发光二极管尺寸缩小失效机制研究
  • 批准号:
    12374385
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
非均质砂岩散射衰减实验测量与微结构散射效应解析
  • 批准号:
    42304144
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
  • 批准号:
    10722011
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
Improving Prediction of Asthma-related Outcomes with Genetic Ancestry-informed Lung Function Equations
利用遗传祖先信息的肺功能方程改善哮喘相关结果的预测
  • 批准号:
    10723861
  • 财政年份:
    2023
  • 资助金额:
    $ 39.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了