CHS: Small: Collaborative Research: Representing and Learning Visualization Design Knowledge

CHS:小型:协作研究:表示和学习可视化设计知识

基本信息

  • 批准号:
    1907399
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

This project contributes new methods and software tools for creating data-driven visualizations that improve the clarity and effectiveness of visual analysis and communication of data. Many visualization design guidelines, like "avoid highly saturated colors", or "start bars in a bar chart at 0", stem from empirical studies of how well people can read visualizations of various types. However, these guidelines are often stated informally in books or articles. In designing a visualization, an author may have to make decisions that prioritize one design guideline over another, yet the informal nature of such principles does not provide sufficient guidance for how to do this. Even when visualization researchers and system designers represent design guidelines in more formal "knowledge bases" that an authoring system can use to guide visualization authors towards more effective graphs, the guidelines are based on a person carefully summarizing the empirical results, an error-prone process. This project addresses these challenges to formulating and applying visualization design knowledge by creating new methods to identify, aggregate, edit, test, and search visualization design knowledge. This research will also address gaps in existing visualization design knowledge, applying novel methods to formulate and assess design guidelines for creating effective "multiple-view" visualizations (such as analysis dashboards or sequential presentations), visualizing very large datasets, and visually expressing uncertainty or error in data. We will create knowledge bases containing guidelines for these types of visualizations as well as an authoring tool to help authors manage competing design considerations between single and multiple views when designing visualizations like dashboards. All experimental results, knowledge bases, and authoring tools developed in this research will be made freely and publicly available.To meet these goals, this project develops a set of methods for identifying and evaluating visualization design guidelines from empirical research on visualization perception and interpretation. To do this, the team will develop ways to re-express existing results from relevant experimental literature on graphical perception and cognition as constraints, and create new methods and tools for directly eliciting design guidelines from visualization experts such as skilled designers or researchers. The project will also produce automated methods for generating visualizations and collecting task-specific visualization judgments in order to learn appropriate priority weights for a given set of design constraints. By developing representations and models for capturing empirical results that can account for the uncertainty that is inherent in results from human subjects experiments, the project stands to synthesize and clarify existing empirical knowledge about visualization design. The research will also advance the state of the art in visualization design knowledge by contributing fundamental methods for (1) identifying and learning guidelines for large dataset visualizations, multiple view visualizations like dashboards, and uncertainty visualizations, and (2) exploring effective interface designs for browsing, editing, and testing visualization knowledge bases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目提供了新的方法和软件工具,用于创建数据驱动的可视化,从而提高可视化分析和数据通信的清晰度和有效性。许多可视化设计指南,例如“避免高度饱和的颜色”或“条形图中的条形从 0 开始”,都源于对人们阅读各种类型可视化效果的实证研究。然而,这些准则通常在书籍或文章中非正式地阐述。在设计可视化时,作者可能必须做出决定,将一个设计指南优先于另一个设计指南,但此类原则的非正式性质并没有为如何做到这一点提供足够的指导。即使可视化研究人员和系统设计者在更正式的“知识库”中表示设计指南(创作系统可以使用该知识库来指导可视化作者获得更有效的图表),这些指南也是基于人员仔细总结经验结果,这是一个容易出错的过程。该项目通过创建新的方法来识别、聚合、编辑、测试和搜索可视化设计知识,解决了制定和应用可视化设计知识的这些挑战。这项研究还将解决现有可视化设计知识中的差距,应用新颖的方法来制定和评估设计指南,以创建有效的“多视图”可视化(例如分析仪表板或顺序演示),可视化非常大的数据集,以及直观地表达不确定性或不确定性。数据错误。我们将创建包含这些类型的可视化指南的知识库以及创作工具,以帮助作者在设计仪表板等可视化时管理单个视图和多个视图之间的竞争设计注意事项。本研究中开发的所有实验结果、知识库和创作工具都将免费公开。为了实现这些目标,本项目开发了一套从可视化感知和解释的实证研究中识别和评估可视化设计指南的方法。为此,该团队将开发方法来重新表达相关实验文献中有关图形感知和认知作为约束的现有结果,并创建新的方法和工具,以直接从可视化专家(例如熟练的设计师或研究人员)引出设计指南。该项目还将产生用于生成可视化和收集特定于任务的可视化判断的自动化方法,以便为给定的一组设计约束学习适当的优先级权重。通过开发用于捕获经验结果的表示和模型,这些结果可以解释人类受试者实验结果固有的不确定性,该项目将综合和澄清有关可视化设计的现有经验知识。该研究还将通过提供以下基本方法来推进可视化设计知识的最新水平:(1)识别和学习大型数据集可视化、仪表板等多视图可视化和不确定性可视化的指南,以及(2)探索有效的界面设计浏览、编辑和测试可视化知识库。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dziban: Balancing Agency & Automation in Visualization Design via Anchored Recommendations
Dziban:平衡机构
  • DOI:
    10.1145/3313831.3376880
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin, Halden;Moritz, Dominik;Heer, Jeffrey
  • 通讯作者:
    Heer, Jeffrey
Gemini 2 : Generating Keyframe-Oriented Animated Transitions Between Statistical Graphics
Gemini 2:在统计图形之间生成面向关键帧的动画过渡
  • DOI:
    10.1109/vis49827.2021.9623291
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kim, Younghoon;Heer, Jeffrey
  • 通讯作者:
    Heer, Jeffrey
DIVI: Dynamically Interactive Visualization
DIVI:动态交互可视化
Designing Animated Transitions to Convey Aggregate Operations
设计动画过渡来传达聚合操作
  • DOI:
    10.1111/cgf.13709
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Younghoon Kim;M. Correll;Jeffrey Heer
  • 通讯作者:
    Jeffrey Heer
Exploring the Effects of Aggregation Choices on Untrained Visualization Users' Generalizations From Data
探索聚合选择对未经训练的可视化用户从数据中进行概括的影响
  • DOI:
    10.1111/cgf.13902
  • 发表时间:
    2020-02-29
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    F. Nguyen;X. Qiao;Jeffrey Heer;J. Hullman
  • 通讯作者:
    J. Hullman
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Heer其他文献

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
部分满足哲学博士学位的要求
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeffrey Heer;Christopher Manning;Daniel McFarl
  • 通讯作者:
    Daniel McFarl
All Friends are Not Equal : Using Weights in Social Graphs to Improve Search
所有朋友并不平等:使用社交图中的权重来改进搜索
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sudheendra Hangal;Diana L. MacLean;M. Lam;Jeffrey Heer
  • 通讯作者:
    Jeffrey Heer
Black Hat Visualization
黑帽可视化
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Correll;Jeffrey Heer
  • 通讯作者:
    Jeffrey Heer
How Do Data Analysts Respond to AI Assistance? A Wizard-of-Oz Study
数据分析师如何应对人工智能的帮助?
  • DOI:
    10.48550/arxiv.2309.10108
  • 发表时间:
    2023-09-18
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Ken Gu;Madeleine Grunde;Andrew M. McNutt;Jeffrey Heer;Tim Althoff
  • 通讯作者:
    Tim Althoff
Proactive wrangling: mixed-initiative end-user programming of data transformation scripts
主动争论:数据转换脚本的混合主动最终用户编程

Jeffrey Heer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Heer', 18)}}的其他基金

III: Large: Collaborative Research: Analysis Engineering for Robust End-to-End Data Science
III:大型:协作研究:稳健的端到端数据科学的分析工程
  • 批准号:
    1901386
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Composing Interactive Data Visualizations
III:媒介:协作研究:构建交互式数据可视化
  • 批准号:
    1562182
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
DC: Medium: Collaborative Research: Data Intensive Computing: Scalable, Social Data Analysis
DC:媒介:协作研究:数据密集型计算:可扩展、社交数据分析
  • 批准号:
    1355723
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
DC: Medium: Collaborative Research: Data Intensive Computing: Scalable, Social Data Analysis
DC:媒介:协作研究:数据密集型计算:可扩展、社交数据分析
  • 批准号:
    0964173
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
HCC: Small: Graphical Perception Revisited: Developing and Validating Design Guidelines for Data Visualization
HCC:小:重新审视图形感知:开发和验证数据可视化设计指南
  • 批准号:
    1017745
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CHS: Small: Collaborative Research: Catalyzing Youth Civic Engagement Through Innovations in Social Computing
CHS:小型:合作研究:通过社会计算创新促进青年公民参与
  • 批准号:
    2054741
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research:Dynamic Computer-Aided Machining: Supporting Interactive Workflows for Digital Fabrication and Manufacturing
CHS:小型:协作研究:动态计算机辅助加工:支持数字制造和制造的交互式工作流程
  • 批准号:
    2007094
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Social Virtual Reality Technology to Improve Networked Meetings
CHS:小型:协作研究:社交虚拟现实技术改善网络会议
  • 批准号:
    2007755
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Shared Mobility Systems to Address Transportation Barriers of Underserved Urban and Rural Communities
CHS:小型:合作研究:共享出行系统,解决服务不足的城乡社区的交通障碍
  • 批准号:
    1910281
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Optimizing the Human-Machine System for Citizen Science
CHS:小型:协作研究:优化公民科学的人机系统
  • 批准号:
    2006400
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了