Ricci Flows through Singularities and Ricci Flows with Bounded Scalar Curvature

穿过奇点的里奇流和具有有界标量曲率的里奇流

基本信息

  • 批准号:
    1906500
  • 负责人:
  • 金额:
    $ 44.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

A Ricci flow is a geometric process that may be used to improve a given geometry towards a more homogeneous one. Ricci flows have become the subject of intensive study, as they have been used to prove various long-standing conjectures, such as the Poincare and Geometrization Conjectures in dimension 3. The general expectation is that a Ricci flow produces a geometry in the limit that is in some sense inherent to the topology, i.e. the loose makeup, of the underlying space. However, usually a Ricci flow develops complicated singularities in finite time. In dimension 3 these singularities can be removed manually by so called surgeries and the flow can be continued beyond them. Recently, a new class of "singular Ricci flows" was introduced in dimension 3. These flows flow "automatically through singularities at an infinitesimal scale", thereby eliminating the somewhat unnatural surgery process. The goal of this project is to understand these flows further and to use this understanding to study the topology of certain spaces of metrics and diffeomorphism groups. In addition, the PI will work on Ricci flows in higher dimensions, aimed at understanding their singularity formation, which may result in a similar surgery or singular flow construction.The research project is split into two projects. The first project is a continuation of the PI's work (in collaboration with Bruce Kleiner) on the uniqueness and continuity of singular Ricci flows through singularities. The general goal of this project is to understand the geometric, topological and analytic applications of this work. Among other things, the PI has a strategy to resolve the Generalized Smale Conjecture, which would extend a previous partial resolution by the PI and Kleiner. Further potential applications concern the topology and geometry of the space of positive scalar curvature metrics, as well as the study of generic Ricci flows in dimension 3. The second project is a continuation of the PI's work on the study of Ricci flows with bounded scalar curvature. The PI will investigate several conjectures that have been verified under the assumption of bounded scalar curvature. These conjectures are likely to remain true if this assumption is removed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
里奇流是一种几何过程,可用于将给定的几何形状改进为更均匀的几何形状。里奇流已成为深入研究的主题,因为它们已被用来证明各种长期存在的猜想,例如第 3 维的庞加莱猜想和几何化猜想。一般期望是里奇流产生的几何极限为从某种意义上说,这是拓扑结构所固有的,即底层空间的松散结构。然而,通常 Ricci 流会在有限时间内产生复杂的奇点。在维度 3 中,这些奇点可以通过所谓的手术手动去除,并且流动可以继续超出它们。最近,在第 3 维中引入了一类新的“奇异 Ricci 流”。这些流“自动以无穷小的尺度流过奇点”,从而消除了有些不自然的手术过程。该项目的目标是进一步理解这些流,并利用这种理解来研究度量和微分同胚群的某些空间的拓扑。此外,PI还将研究更高维度的Ricci流,旨在了解其奇点形成,这可能会导致类似的手术或奇点流构建。该研究项目分为两个项目。第一个项目是 PI(与 Bruce Kleiner 合作)关于奇点 Ricci 流通过奇点的独特性和连续性的工作的延续。该项目的总体目标是了解这项工作的几何、拓扑和分析应用。除此之外,PI 有一个解决广义斯梅尔猜想的策略,这将延续 PI 和 Kleiner 之前的部分解决方案。进一步的潜在应用涉及正标量曲率度量空间的拓扑和几何,以及维度 3 中通用 Ricci 流的研究。第二个项目是 PI 对有界标量曲率 Ricci 流研究工作的延续。 PI 将研究在有界标量曲率假设下已得到验证的几个猜想。如果消除这一假设,这些猜想可能仍然成立。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the rotational symmetry of 3-dimensional κ-solutions
关于 3 维 δ 解的旋转对称性
The Ricci flow under almost non-negative curvature conditions
几乎非负曲率条件下的 Ricci 流
  • DOI:
    10.1007/s00222-019-00864-7
  • 发表时间:
    2019-02-18
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    R. Bamler;Esther Cabezas;Burkhard Wilking
  • 通讯作者:
    Burkhard Wilking
Uniqueness and stability of Ricci flow through singularities
奇点利玛窦流的唯一性和稳定性
  • DOI:
    10.4310/acta.2022.v228.n1.a1
  • 发表时间:
    2017-09-13
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    R. Bamler;B. Kleiner
  • 通讯作者:
    B. Kleiner
Ricci flow and diffeomorphism groups of 3-manifolds
3 流形的 Ricci 流和微分同胚群
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Bamler其他文献

Richard Bamler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Bamler', 18)}}的其他基金

Ricci Flow
利玛窦流
  • 批准号:
    2204364
  • 财政年份:
    2022
  • 资助金额:
    $ 44.15万
  • 项目类别:
    Continuing Grant
Ricci Flow
利玛窦流
  • 批准号:
    2204364
  • 财政年份:
    2022
  • 资助金额:
    $ 44.15万
  • 项目类别:
    Continuing Grant
On the long-time behavior of Ricci flow and Ricci flow surgery
论Ricci流和Ricci流手术的长期行为
  • 批准号:
    1611906
  • 财政年份:
    2016
  • 资助金额:
    $ 44.15万
  • 项目类别:
    Standard Grant

相似国自然基金

面向小样本场景的新型网络入侵流量检测方法研究
  • 批准号:
    62302197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大口径管道流量高精度测量的光纤多参数传感及解耦技术研究
  • 批准号:
    62375045
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
适用于液相色谱的皮升流量计量
  • 批准号:
    22304186
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向数据中心动态混合流量的网络传输优化关键技术研究
  • 批准号:
    62302472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
m6A甲基化修饰介导lncRNA SNHG12调控深低温低流量术后脑缺血再灌注损伤的作用机制研究
  • 批准号:
    82370306
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

The dynamics of pyroclastic flows at active volcanoes : high mobility and bulking through substrate entrainment
活火山火山碎屑流的动力学:高流动性和通过基质夹带而膨胀
  • 批准号:
    2894571
  • 财政年份:
    2023
  • 资助金额:
    $ 44.15万
  • 项目类别:
    Studentship
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2246916
  • 财政年份:
    2023
  • 资助金额:
    $ 44.15万
  • 项目类别:
    Standard Grant
Tracking sediment waves through Himalayan fluvial cascades following extreme mass flows
跟踪极端质量流后穿过喜马拉雅河流瀑布的沉积物波
  • 批准号:
    NE/Y002911/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.15万
  • 项目类别:
    Research Grant
Clarification of Energy Mechanisms in Supercritical Accretion Flows on to Neutron Stars through Hydrodynamics and Radiative Transfer Simulations
通过流体动力学和辐射传输模拟阐明中子星超临界吸积流的能量机制
  • 批准号:
    22KJ0368
  • 财政年份:
    2023
  • 资助金额:
    $ 44.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Moving Towards Sustainable Watershed Management: Integrating Environmental Flows into Environmental Assessment through Co-creation with Indigenous Nations
迈向可持续流域管理:通过与土著民族共同创造将环境流量纳入环境评估
  • 批准号:
    576180-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 44.15万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了