Anisotropic Energy Functionals in Geometric Analysis
几何分析中的各向异性能量泛函
基本信息
- 批准号:1906451
- 负责人:
- 金额:$ 12.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Anisotropic energies were introduced by Gibbs in the 19th century to model the equilibrium shape of crystals and, more generally, the surface tension at the interfaces of any two different materials. An increasing interest has been devoted to the corresponding geometric variational problems in mathematics. Minimizing the area functional, the simplest anisotropic energy, is one of the most famous examples in this class of problems. It dates back to the work of Lagrange in 1760 and has had a major impact both in physics and in mathematics. Jesse Douglas was awarded the first Fields Medal in 1936 for his results on this topic; yet, a variety of basic questions remain open, especially in the more general anisotropic setting. The goal of this project is to develop new theories and techniques to improve the state of the art of anisotropic geometric variational problems. This project aims to increase our understanding of critical points for general elliptic integrands. In contrast to the reach theory of minimal surfaces, i.e., critical points of the area functional, very little is understood in the anisotropic framework. One of the main themes of this project is the existence of anisotropic minimal hypersurfaces in closed Riemannian manifolds. This is a fascinating and central question in geometric analysis, which has been answered for the area functional by Pitts, Schoen, Simon and Yau in the eighties. The investigator will address the more general anisotropic setting, broadening the reach of the min-max theory. This will require a refined analysis of the structure of varifolds, which will find applications also in the construction of geometric flows. Another goal of this project is to study existence and regularity results for energy minimizers of the set-theoretic Plateau problem in general metric spaces. This investigation will be then further refined for size minimizer rectifiable currents. Moreover, the investigator will study the behavior of hypersurfaces with almost constant anisotropic mean curvature. Finally, the stability and regularity conjectures in optimal branched transport will be addressed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
吉布斯在 19 世纪引入各向异性能量来模拟晶体的平衡形状,更一般地说,模拟任何两种不同材料界面处的表面张力。人们对数学中相应的几何变分问题越来越感兴趣。最小化泛函面积(最简单的各向异性能量)是此类问题中最著名的例子之一。它的历史可以追溯到 1760 年拉格朗日的工作,对物理学和数学都产生了重大影响。杰西·道格拉斯 (Jesse Douglas) 因其在这一主题上的成就于 1936 年荣获首届菲尔兹奖;然而,各种基本问题仍然悬而未决,特别是在更一般的各向异性环境中。该项目的目标是开发新的理论和技术来提高各向异性几何变分问题的最新水平。该项目旨在增进我们对一般椭圆被积函数临界点的理解。与最小曲面的到达理论(即面积泛函的临界点)相反,在各向异性框架中我们了解甚少。该项目的主题之一是闭黎曼流形中各向异性最小超曲面的存在。这是几何分析中一个令人着迷的核心问题,皮茨、舍恩、西蒙和丘在八十年代就泛函面积回答了这个问题。研究人员将解决更一般的各向异性设置,扩大最小-最大理论的范围。这将需要对varifolds的结构进行精细分析,这也将在几何流的构造中找到应用。该项目的另一个目标是研究一般度量空间中集合论高原问题的能量最小化器的存在性和规律性结果。然后,这项研究将进一步细化,以实现尺寸最小化的可整流电流。此外,研究人员将研究具有几乎恒定的各向异性平均曲率的超曲面的行为。最后,将解决最佳分支运输中的稳定性和规律性猜想。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equivalence of the Ellipticity Conditions for Geometric Variational Problems
几何变分问题椭圆度条件的等价
- DOI:10.1002/cpa.21890
- 发表时间:2020-03
- 期刊:
- 影响因子:3
- 作者:De Rosa, Antonio;Kolasiński, Sławomir
- 通讯作者:Kolasiński, Sławomir
Efficient joint object matching via linear programming
通过线性规划进行高效的关节对象匹配
- DOI:10.1007/s10107-023-01932-w
- 发表时间:2023-02
- 期刊:
- 影响因子:2.7
- 作者:De Rosa, Antonio;Khajavirad, Aida
- 通讯作者:Khajavirad, Aida
Regularity for graphs with bounded anisotropic mean curvature
具有有界各向异性平均曲率图的正则性
- DOI:10.1007/s00222-022-01129-6
- 发表时间:2022-11
- 期刊:
- 影响因子:3.1
- 作者:De Rosa, Antonio;Tione, Riccardo
- 通讯作者:Tione, Riccardo
On the Well‐Posedness of Branched Transportation
论分支运输的适定性
- DOI:10.1002/cpa.21919
- 发表时间:2020-06
- 期刊:
- 影响因子:3
- 作者:Colombo, Maria;De Rosa, Antonio;Marchese, Andrea
- 通讯作者:Marchese, Andrea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antonio De Rosa其他文献
HER2 expression and genOmic characterization of rESected brain metastases from colorectal cancer: the HEROES study
结直肠癌切除脑转移瘤的 HER2 表达和基因组学特征:HEROES 研究
- DOI:
10.1038/s41416-023-02569-4 - 发表时间:
2024-02-12 - 期刊:
- 影响因子:8.8
- 作者:
A. Prete;V. Angerilli;Francesca Bergamo;V. Vettore;C. De Toni;R. Intini;K. Cerma;G. Ricagno;Riccardo Cerantola;E. Perissinotto;Antonio De Rosa;Carlotta Ceccon;Jessica Gasparello;Luca Denaro;Alberto D'Amico;Franco Chioffi;E. Carcea;M. Fassan;S. Lonardi - 通讯作者:
S. Lonardi
Understanding the Variability of 22q11.2 Deletion Syndrome: The Role of Epigenetic Factors
了解 22q11.2 缺失综合征的变异性:表观遗传因素的作用
- DOI:
10.3390/genes15030321 - 发表时间:
2024-02-29 - 期刊:
- 影响因子:3.5
- 作者:
F. Cillo;Emma Coppola;Federico Habetswallner;Francesco Cecere;Laura Pignata;E. Toriello;Antonio De Rosa;Laura Grilli;Antonio Ammendola;Paolo Salerno;R. Romano;E. Cirillo;G. Merla;Andrea Riccio;C. Pignata;G. Giardino - 通讯作者:
G. Giardino
Boundary regularity for anisotropic minimal Lipschitz graphs
各向异性最小 Lipschitz 图的边界正则性
- DOI:
10.1080/03605302.2023.2294335 - 发表时间:
2023-05-18 - 期刊:
- 影响因子:1.9
- 作者:
Antonio De Rosa;Reinaldo Resende - 通讯作者:
Reinaldo Resende
The anisotropic min‐max theory: Existence of anisotropic minimal and CMC surfaces
各向异性最小-最大理论:各向异性最小表面和 CMC 表面的存在
- DOI:
10.1002/cpa.22189 - 发表时间:
2022-05-23 - 期刊:
- 影响因子:3
- 作者:
Guido De Philippis;Antonio De Rosa - 通讯作者:
Antonio De Rosa
Construction of fillings with prescribed Gaussian image and applications
指定高斯图像的填充物构建及应用
- DOI:
10.1080/03605302.2023.2294335 - 发表时间:
2024-01-19 - 期刊:
- 影响因子:1.9
- 作者:
Antonio De Rosa;Yucong Lei;Robert Young - 通讯作者:
Robert Young
Antonio De Rosa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antonio De Rosa', 18)}}的其他基金
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 12.42万 - 项目类别:
Continuing Grant
Anisotropic Energy Functionals in Geometric Analysis
几何分析中的各向异性能量泛函
- 批准号:
2112311 - 财政年份:2020
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
相似国自然基金
基于细胞活力敏感AIE荧光探针的肿瘤类器官药敏试验新方法及其响应机制研究
- 批准号:82302647
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组蛋白乙酰转移酶GCN5调控糖脂代谢促进胶质母细胞瘤干细胞活力的机制与功能研究
- 批准号:82373095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
全基因组关联分析揭示ZmMGT1调控玉米种子活力的功能机理
- 批准号:32372161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多时空维度下地铁域环境对地下公共空间活力的影响机理研究
- 批准号:52308387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市夜间日常生活区的演进过程、活力机制与更新治理路径研究
- 批准号:52378053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Research on various canonical Kaehler metrics by means of energy functionals and non-Archimedean metrics
利用能量泛函和非阿基米德度量研究各种典型凯勒度量
- 批准号:
23K03120 - 财政年份:2023
- 资助金额:
$ 12.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advancing Machine-Learning Augmented Free-Energy Density Functionals for Fast and Accurate Quantum Simulations of Warm Dense Plasmas
推进机器学习增强自由能密度泛函,以实现快速、准确的热致密等离子体量子模拟
- 批准号:
2205521 - 财政年份:2022
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Advancing Machine-Learning Augmented Free-Energy Density Functionals for Fast and Accurate Quantum Simulations of Warm Dense Plasmas
推进机器学习增强自由能密度泛函,以实现快速、准确的热致密等离子体量子模拟
- 批准号:
2205521 - 财政年份:2022
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Anisotropic Energy Functionals in Geometric Analysis
几何分析中的各向异性能量泛函
- 批准号:
2112311 - 财政年份:2020
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Geometric curvature functionals: energy landscape and discrete methods
几何曲率函数:能量景观和离散方法
- 批准号:
282535003 - 财政年份:2015
- 资助金额:
$ 12.42万 - 项目类别:
Research Grants