CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization

职业:通过非凸统计优化扩大高维数据中的知识发现

基本信息

  • 批准号:
    1906169
  • 负责人:
  • 金额:
    $ 50.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The past decade has witnessed a surge of research activities on knowledge discovery in high-dimensional data, among which convex optimization-based methods are widely used. While convex optimization algorithms enjoy global convergence guarantees, they are not always scalable to high-dimensional massive data. Motivated by the empirical success of nonconvex methods such as matrix factorization, the objective of this project is to develop a new generation of principled nonconvex statistical optimization algorithms to scale up high-dimensional machine learning methods. This project amplifies the utility of high-dimensional knowledge discovery methods in various fields such as computational genomics and recommendation systems. It incorporates the resulting research outcomes into curriculum development and online courses, to train a new generation of machine learning and data mining practitioners. In addition, special training is provided to K-12 students and community college students for a broader education of modern data analysis techniques.This project consists of three synergistic research thrusts. First, it develops a family of nonconvex algorithms for structured sparse learning, including extensions to both parallel computing and distributed computing. Second, it devises a unified nonconvex optimization framework for low-rank matrix estimation, which covers a wide range of low-rank matrix learning problems such as matrix completion and preference learning. Several acceleration techniques are also explored. Third, it develops a family of alternating optimization algorithms, to solve the bi-convex optimization problem for estimating various complex statistical models. This project integrates modern optimization techniques with model-based statistical thinking, and provides a systematic way to design nonconvex high-dimensional machine learning methods with strong theoretical guarantees. The targeted applications include but not limited to computational genomics, neuroscience, and recommendation systems.
过去十年,高维数据知识发现的研究活动激增,其中基于凸优化的方法被广泛使用。虽然凸优化算法享有全局收敛保证,但它们并不总是可扩展到高维海量数据。受矩阵分解等非凸方法经验成功的推动,该项目的目标是开发新一代有原则的非凸统计优化算法,以扩展高维机器学习方法。该项目扩大了高维知识发现方法在计算基因组学和推荐系统等各个领域的效用。它将研究成果纳入课程开发和在线课程中,以培训新一代机器学习和数据挖掘从业者。此外,还为 K-12 学生和社区学院学生提供特殊培训,以进行更广泛的现代数据分析技术教育。该项目由三个协同研究重点组成。首先,它开发了一系列用于结构化稀疏学习的非凸算法,包括并行计算和分布式计算的扩展。其次,它为低秩矩阵估计设计了一个统一的非凸优化框架,涵盖了广泛的低秩矩阵学习问题,例如矩阵补全和偏好学习。还探索了几种加速技术。第三,它开发了一系列交替优化算法,以解决估计各种复杂统计模型的双凸优化问题。该项目将现代优化技术与基于模型的统计思维相结合,为设计非凸高维机器学习方法提供了系统的途径,并具有强有力的理论保证。目标应用包括但不限于计算基因组学、神经科学和推荐系统。

项目成果

期刊论文数量(81)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Interplay Between Misspecification and Sub-optimality Gap in Linear Contextual Bandits
关于线性上下文老虎机中错误指定和次优差距之间的相互作用
  • DOI:
    10.48550/arxiv.2303.09390
  • 发表时间:
    2023-03-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weitong Zhang;Jiafan He;Zhiyuan Fan;Q. Gu
  • 通讯作者:
    Q. Gu
Uniform-PAC Bounds for Reinforcement Learning with Linear Function Approximation
线性函数逼近强化学习的统一 PAC 界限
Learning One-hidden-layer ReLU Networks via Gradient Descent
通过梯度下降学习单隐藏层 ReLU 网络
Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
通过特征映射为折扣 MDP 提供可证明有效的强化学习
Neural Contextual Bandits with UCB-based Exploration
基于 UCB 探索的神经上下文强盗
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quanquan Gu其他文献

Mean-Field Analysis of Two-Layer Neural Networks: Non-Asymptotic Rates and Generalization Bounds
两层神经网络的平均场分析:非渐近率和泛化界限
  • DOI:
  • 发表时间:
    2020-02-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zixiang Chen;Yuan Cao;Quanquan Gu;Tong Zhang
  • 通讯作者:
    Tong Zhang
Pure Exploration in Asynchronous Federated Bandits
异步联邦强盗的纯粹探索
  • DOI:
    10.48550/arxiv.2310.11015
  • 发表时间:
    2023-10-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zichen Wang;Chuanhao Li;Chenyu Song;Lianghui Wang;Quanquan Gu;Huazheng Wang
  • 通讯作者:
    Huazheng Wang
Differentially Private Hypothesis Transfer Learning
差分私有假设迁移学习
  • DOI:
    10.1007/978-3-030-10928-8_48
  • 发表时间:
    2018-09-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Wang;Quanquan Gu;Donald E. Brown
  • 通讯作者:
    Donald E. Brown
Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow
通过多相 Procrustes 流快速高效地完成归纳矩阵
  • DOI:
  • 发表时间:
    2018-03-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao Zhang;S. Du;Quanquan Gu
  • 通讯作者:
    Quanquan Gu
Uncertainty Assessment and False Discovery Rate Control in High-Dimensional Granger Causal Inference
高维格兰杰因果推理中的不确定性评估和错误发现率控制

Quanquan Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Quanquan Gu', 18)}}的其他基金

CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312094
  • 财政年份:
    2023
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
  • 批准号:
    2323113
  • 财政年份:
    2023
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
III: Small: Towards the Foundations of Training Deep Neural Networks: New Theory and Algorithms
III:小:迈向训练深度神经网络的基础:新理论和算法
  • 批准号:
    2008981
  • 财政年份:
    2020
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Rank Aggregation with Heterogeneous Information Sources: Efficient Algorithms and Fundamental Limits
CIF:小型:协作研究:异构信息源的排名聚合:高效算法和基本限制
  • 批准号:
    1911168
  • 财政年份:
    2019
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Taming Big Networks via Embedding
BIGDATA:F:协作研究:通过嵌入驯服大网络
  • 批准号:
    1741342
  • 财政年份:
    2018
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Taming Big Networks via Embedding
BIGDATA:F:协作研究:通过嵌入驯服大网络
  • 批准号:
    1855099
  • 财政年份:
    2018
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: High-Dimensional Machine Learning Methods for Personalized Cancer Genomics
III:小:协作研究:个性化癌症基因组学的高维机器学习方法
  • 批准号:
    1903202
  • 财政年份:
    2018
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Learning with Incomplete and Noisy Knowledge
III:小:知识不完整且有噪音的协作学习
  • 批准号:
    1904183
  • 财政年份:
    2018
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Standard Grant
CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization
职业:通过非凸统计优化扩大高维数据中的知识发现
  • 批准号:
    1652539
  • 财政年份:
    2017
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: High-Dimensional Machine Learning Methods for Personalized Cancer Genomics
III:小:协作研究:个性化癌症基因组学的高维机器学习方法
  • 批准号:
    1717206
  • 财政年份:
    2017
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

用于富集和浓缩放射性气态流出物中Kr、Xe的多孔材料的理论设计与实验验证
  • 批准号:
    22376153
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
序列缩放攻击下异质多智能体系统的切换事件触发输出同步控制研究
  • 批准号:
    62373180
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于大规模生物反应器内细胞运动轨迹模拟的动态代谢调控研究
  • 批准号:
    31900073
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
可缩放固态系统的量子计算与模拟
  • 批准号:
    11920101005
  • 批准年份:
    2019
  • 资助金额:
    210 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于内容感知的RGB-D视频非规则形状缩放方法研究
  • 批准号:
    61702241
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Scaling up Brain Circuit Reconstruction with Human-centric Machine Learning
职业:利用以人为本的机器学习扩大脑回路重建
  • 批准号:
    2239688
  • 财政年份:
    2023
  • 资助金额:
    $ 50.6万
  • 项目类别:
    Continuing Grant
Scaling-Up Integrative Pain Management in Federally Qualified Health Centers
在联邦合格的健康中心扩大综合疼痛管理
  • 批准号:
    10449763
  • 财政年份:
    2022
  • 资助金额:
    $ 50.6万
  • 项目类别:
Scaling-Up Integrative Pain Management in Federally Qualified Health Centers
在联邦合格的健康中心扩大综合疼痛管理
  • 批准号:
    10667465
  • 财政年份:
    2022
  • 资助金额:
    $ 50.6万
  • 项目类别:
Scaling Up Culturally Affirming Pathways to Biomedical Faculty Careers for Native Scholars
扩大本土学者通往生物医学教师职业的文化肯定途径
  • 批准号:
    10228708
  • 财政年份:
    2020
  • 资助金额:
    $ 50.6万
  • 项目类别:
Scaling Up Culturally Affirming Pathways to Biomedical Faculty Careers for Native Scholars
扩大本土学者通往生物医学教师职业的文化肯定途径
  • 批准号:
    10673372
  • 财政年份:
    2020
  • 资助金额:
    $ 50.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了