SCC: Video Based Machine Learning for Smart Traffic Analysis and Management

SCC:基于视频的机器学习,用于智能流量分析和管理

基本信息

  • 批准号:
    1922782
  • 负责人:
  • 金额:
    $ 199.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

The goal of this project is to further the ability of cities and communities to deploy technology that saves lives through safer transportation systems. The approach is to create open source analytics solutions to enable novel transportation applications that utilize data from low-cost video sensors. Video data are processed using edge computing (inexpensive computing hardware that performs analysis without storing significant amounts of data) in order to reduce the amount of data stored. Social dimensions of the research project emerge from the deep research partnership between the City and the University, with the goal to provide replicable and near-term social impacts. The project aligns with the Vision Zero concept to reduce traffic fatalities, with programs that are based on education, enforcement and design. By understanding the risk profile of an intersection through automated detection of near miss events, communities will be able to proactively design and alter streets and intersections to be safer. The goal of designing a smart city, when addressing the technical challenges at the intersection, street and system levels, has several research components. (i) Development of new algorithms for multi-target tracking: The problems of occlusion, temporal assignment of features to objects and target motion will be jointly formulated. (ii) Integrated optimization and simulation for signal control: We formulate the problem of estimating signal control parameters (offsets, phasing etc.) in a network as one of global optimization. (iii) Real-time reinforcement learning is a natural choice when online machine learning meets real world feedback from the City. Our ability to obtain and analyze continuous-time data at the network level will provide insights on how conflict points and patterns can change through the network. This is expected to impact decisions in traffic management, smart city planning and safety.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是提高城市和社区部署技术的能力,通过更安全的交通系统来拯救生命。该方法是创建开源分析解决方案,以实现利用低成本视频传感器数据的新型交通应用程序。使用边缘计算(无需存储大量数据即可执行分析的廉价计算硬件)处理视频数据,以减少存储的数据量。该研究项目的社会层面源于城市与大学之间的深入研究伙伴关系,其目标是提供可复制的近期社会影响。该项目与减少交通死亡人数的“零愿景”概念相一致,其计划基于教育、执行和设计。通过自动检测未遂事件来了解十字路口的风险状况,社区将能够主动设计和改造街道和十字路口,使其更加安全。在解决交叉路口、街道和系统层面的技术挑战时,设计智慧城市的目标包含多个研究组成部分。 (i) 开发多目标跟踪新算法:将联合制定遮挡、对象特征的时间分配和目标运动的问题。 (ii)信号控制的综合优化和仿真:我们将估计网络中的信号控制参数(偏移、定相等)的问题表述为全局优化之一。 (iii) 当在线机器学习满足城市的现实世界反馈时,实时强化学习是一个自然的选择。我们在网络级别获取和分析连续时间数据的能力将提供有关冲突点和模式如何通过网络发生变化的见解。预计这将影响交通管理、智慧城市规划和安全方面的决策。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Modern Intersection Data Analytics System for Pedestrian and Vehicular Safety
  • DOI:
    10.1109/itsc55140.2022.9921827
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tania Banerjee-Mishra;Ke Chen;Alejandro Almaraz;Rahul Sengupta;Yashaswi Karnati;Bryce Grame;E. Posadas;Subhadipto Poddar;R. Schenck;Jeremy Dilmore;Sivaramnakrishnan Srinivasan;A. Rangarajan;Sanjay Ranka
  • 通讯作者:
    Tania Banerjee-Mishra;Ke Chen;Alejandro Almaraz;Rahul Sengupta;Yashaswi Karnati;Bryce Grame;E. Posadas;Subhadipto Poddar;R. Schenck;Jeremy Dilmore;Sivaramnakrishnan Srinivasan;A. Rangarajan;Sanjay Ranka
Intelligent Intersection: Two-stream Convolutional Networks for Real-time Near-accident Detection in Traffic Video
Learning Scene Dynamics from Point Cloud Sequences
  • DOI:
    10.1007/s11263-021-01551-y
  • 发表时间:
    2022-01-23
  • 期刊:
  • 影响因子:
    19.5
  • 作者:
    He, Pan;Emami, Patrick;Rangarajan, Anand
  • 通讯作者:
    Rangarajan, Anand
Long-Range Multi-Object Tracking at Traffic Intersections on Low-Power Devices
低功耗设备上交通路口的远程多目标跟踪
TQAM: Temporal Attention for Cycle-wise Queue Length Estimation using High-Resolution Loop Detector Data
TQAM:使用高分辨率循环检测器数据进行循环队列长度估计的时间注意力
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjay Ranka其他文献

The Temporal Relationship Between Ecological Pain and Life-Space Mobility in Older Adults With Knee Osteoarthritis: A Smartwatch-Based Demonstration Study (Preprint)
患有膝骨关节炎的老年人的生态疼痛与生活空间流动性之间的时间关系:基于智能手表的演示研究(预印本)
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Mardini;Subhash Nerella;Matin Kheirkhahan;Sanjay Ranka;R. Fillingim;Yujie Hu;D. Corbett;Erta Cenko;E. Weber;Parisa Rashidi;T. Manini
  • 通讯作者:
    T. Manini
Hybrid Approaches for Data Reduction of Spatiotemporal Scientific Applications
时空科学应用数据缩减的混合方法
  • DOI:
    10.1109/dcc58796.2024.00084
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao Li;Qian Gong;Jaemoon Lee;S. Klasky;A. Rangarajan;Sanjay Ranka
  • 通讯作者:
    Sanjay Ranka
Error-Bounded Learned Scientific Data Compression with Preservation of Derived Quantities
保留导出量的误差有限的学习科学数据压缩
  • DOI:
    10.3390/app12136718
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaemoon Lee;Qian Gong;J. Choi;Tania Banerjee;S. Klasky;Sanjay Ranka;A. Rangarajan
  • 通讯作者:
    A. Rangarajan
Gene expression Markers improve clustering of CGH data
基因表达标记改善 CGH 数据的聚类
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Liu;Sanjay Ranka;Tamer Kahveci
  • 通讯作者:
    Tamer Kahveci
An Algorithmic and Software Pipeline for Very Large Scale Scientific Data Compression with Error Guarantees
用于具有错误保证的超大规模科学数据压缩的算法和软件管道

Sanjay Ranka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjay Ranka', 18)}}的其他基金

EAGER: Software-Hardware Co-Design Approaches for Multi-Level Memories
EAGER:多级存储器的软硬件协同设计方法
  • 批准号:
    1748652
  • 财政年份:
    2017
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: SparseKaffe: high-performance, auto-tuned, energy-aware algorithms for sparse direct methods on modern heterogeneous architectures
CSR:媒介:协作研究:SparseKaffe:现代异构架构上稀疏直接方法的高性能、自动调整、能量感知算法
  • 批准号:
    1514116
  • 财政年份:
    2015
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Continuing Grant
Student Travel Sponsorship for Third ACM BCB Conference, 2012
2012 年第三届 ACM BCB 会议学生旅行赞助
  • 批准号:
    1244794
  • 财政年份:
    2012
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Standard Grant
Sparse Direct Methods on High-Performance Heterogeneous Architectures
高性能异构架构的稀疏直接方法
  • 批准号:
    1115297
  • 财政年份:
    2011
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: GridPac: A Resource Management System for Energy and Performance Optimization on Computational Grids
CSR:媒介:协作研究:GridPac:计算网格能源和性能优化的资源管理系统
  • 批准号:
    0905308
  • 财政年份:
    2009
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Continuing Grant
MCDA: Collaborative Research: A Multi-Element and Multi-Objective Optimization Approach for Allocating tasks to Multi-Core Processors
MCDA:协作研究:一种将任务分配给多核处理器的多元素和多目标优化方法
  • 批准号:
    0903430
  • 财政年份:
    2009
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Standard Grant
MRI: Acquisition of CASTOR: A High-Performance Communication and Storage Backbone for Data-Intensive Science and Engineering Computing
MRI:收购 CASTOR:用于数据密集型科学和工程计算的高性能通信和存储骨干
  • 批准号:
    0421200
  • 财政年份:
    2004
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Standard Grant
ITR: Collaborative Research: A Data Mining and Exploration Middleware for Grid and Distributed Computing
ITR:协作研究:用于网格和分布式计算的数据挖掘和探索中间件
  • 批准号:
    0325459
  • 财政年份:
    2003
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Continuing Grant
CISE Educational Innovation Program: Mainstreaming Parallel and Distributed Computing in the Computer Science Undergraduate Curriculum
CISE 教育创新计划:将并行和分布式计算纳入计算机科学本科课程的主流
  • 批准号:
    9634470
  • 财政年份:
    1996
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Standard Grant
Performance Modeling of SIMD and MIMD Parallel Computers using Neural Networks
使用神经网络对 SIMD 和 MIMD 并行计算机进行性能建模
  • 批准号:
    9110812
  • 财政年份:
    1991
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于语义解耦和提示的高效监控视频编码与分析方法研究
  • 批准号:
    62302246
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于频域的海量视频搜索与推荐深度网络快速计算方法研究
  • 批准号:
    62376108
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于网络感知的360度视频流媒体缓存管理技术研究
  • 批准号:
    62302268
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多层次时序关系感知的视频动作检测和定位算法研究
  • 批准号:
    62372325
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于序列化视觉内容和文字信息联合观点预测的社交媒体视频评论方法研究
  • 批准号:
    62302474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344795
  • 财政年份:
    2024
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344793
  • 财政年份:
    2024
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Standard Grant
ViMuSe - a video-based AI music recommendation engine to improve creative efficiency and diversity.
ViMuSe - 基于视频的AI音乐推荐引擎,可提高创作效率和多样性。
  • 批准号:
    10104871
  • 财政年份:
    2024
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344790
  • 财政年份:
    2024
  • 资助金额:
    $ 199.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了