Learning-based Adaptive Optimal Control Principles for Human Movements
基于学习的人体运动自适应最优控制原理
基本信息
- 批准号:1903781
- 负责人:
- 金额:$ 29.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of human movement, driven by the desire to expand our understanding of the brain, holds great promise for devising new therapies for people who suffer from neurodegenerative disorders such as Parkinson's disease and Huntington's disease. This proposal aims to deepen our preliminary research in learning-based control theory as a new computational principle of sensorimotor control, while, at the same time, validating the proposed theory through numerical simulations and biological experiments. It is an interdisciplinary project that combines tools and methods from reinforcement learning, nonlinear control theory, and adaptive dynamic programming. Rigorous stability and robustness analysis as well as convergence proofs for the proposed learning algorithms will be carried out. A fundamentally novel aspect of the proposal is that attention will be paid to continuous-time dynamical systems described by differential equations as opposed to the conventional models used in the past literature such as discrete-time systems and Markov decision processes (MDPs). Intellectual merit:This interdisciplinary project is aimed at developing and validating robust adaptive dynamic programming as a theory of human sensorimotor learning and control. To this end, there is a great need to develop new results that go beyond the present literature by considering a wider class of continuous-time stochastic systems with both additive and multiplicative noise and strong nonlinearities. Human behavioural experiments are to be designed to test and develop computational models of sensorimotor control. Broader impacts:Even though human movement problems are targeted in this project, it is expected that the findings of this project toward learning-based control theory will be useful for other problems arising from engineering and computational neuroscience such as robotic rehabilitation. The proposal also includes a plan of educational activities centered on student supervision, curriculum development, knowledge dissemination, and collaboration with New York University Center for Neural Science. The PI hopes to organize workshops and invited sessions at major conferences, providing an opportunity to students and junior researchers to interact with leading authorities in automatic control and computational neuroscience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了扩大我们对大脑的了解,对人体运动的研究有望为患有帕金森病和亨廷顿舞蹈病等神经退行性疾病的人们设计新疗法。该提案旨在深化基于学习的控制理论作为感觉运动控制的新计算原理的初步研究,同时通过数值模拟和生物实验验证所提出的理论。它是一个跨学科项目,结合了强化学习、非线性控制理论和自适应动态规划的工具和方法。将对所提出的学习算法进行严格的稳定性和鲁棒性分析以及收敛证明。该提案的一个根本新颖的方面是,将关注由微分方程描述的连续时间动力系统,而不是过去文献中使用的传统模型,例如离散时间系统和马尔可夫决策过程(MDP)。智力价值:这个跨学科项目旨在开发和验证鲁棒自适应动态规划作为人类感觉运动学习和控制的理论。为此,非常需要通过考虑更广泛的具有加性和乘性噪声以及强非线性的连续时间随机系统来开发超越现有文献的新结果。人类行为实验旨在测试和开发感觉运动控制的计算模型。 更广泛的影响:尽管该项目针对的是人类运动问题,但预计该项目基于学习的控制理论的研究结果将有助于解决工程和计算神经科学(例如机器人康复)引起的其他问题。该提案还包括一项以学生监督、课程开发、知识传播以及与纽约大学神经科学中心合作为中心的教育活动计划。 PI希望在主要会议上组织研讨会和特邀会议,为学生和初级研究人员提供与自动控制和计算神经科学领域领先权威互动的机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Optimal Control of Linear Periodic Systems: An Off-Policy Value Iteration Approach
线性周期系统的自适应最优控制:一种离策略值迭代方法
- DOI:10.1109/tac.2020.2987313
- 发表时间:2019-01-24
- 期刊:
- 影响因子:6.8
- 作者:B. Pang;Zhong
- 通讯作者:Zhong
A Data-driven Approach for Constrained Infinite-Horizon Linear Quadratic Regulation
用于约束无限范围线性二次调节的数据驱动方法
- DOI:10.1109/cdc42340.2020.9304046
- 发表时间:2020-12-14
- 期刊:
- 影响因子:0
- 作者:Bo Pang;Zhong
- 通讯作者:Zhong
Data-driven constrained optimal model reduction
数据驱动的约束最优模型缩减
- DOI:10.1016/j.ejcon.2019.10.006
- 发表时间:2020-05-01
- 期刊:
- 影响因子:0
- 作者:G. Scarciotti;Zhong;A. Astolfi
- 通讯作者:A. Astolfi
Continuous-Time Robust Dynamic Programming
连续时间鲁棒动态规划
- DOI:10.1137/18m1214147
- 发表时间:2019-01
- 期刊:
- 影响因子:2.2
- 作者:Bian, Tao;Jiang, Zhong
- 通讯作者:Jiang, Zhong
Learning-Based Adaptive Optimal Control of Linear Time-Delay Systems: A Policy Iteration Approach
- DOI:10.1109/tac.2023.3273786
- 发表时间:2022-10-01
- 期刊:
- 影响因子:6.8
- 作者:Leilei Cui;Bo Pang;Zhong
- 通讯作者:Zhong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhong-Ping Jiang其他文献
Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
用于遥感图像超分辨率的多注意生成对抗网络
- DOI:
10.1109/tgrs.2022.3180068 - 发表时间:
2021 - 期刊:
- 影响因子:8.2
- 作者:
Meng Xu;Wang Zhihao;Jiasong Zhu;Zhong-Ping Jiang;Sen Jia - 通讯作者:
Sen Jia
Nonlinear Control Tools for Fused Magnesium Furnaces: Design and Implementation
电熔镁炉非线性控制工具:设计与实现
- DOI:
10.1109/tie.2017.2767545 - 发表时间:
- 期刊:
- 影响因子:7.7
- 作者:
Zhiwei. Wu;Tengfei. Liu;Zhong-Ping Jiang;Tianyou. Chai;Lina. Zhang - 通讯作者:
Lina. Zhang
Distributed Global Output-Feedback Control for a Class of Euler–Lagrange Systems
一类欧拉-拉格朗日系统的分布式全局输出反馈控制
- DOI:
10.1109/tac.2017.2696705 - 发表时间:
2017 - 期刊:
- 影响因子:6.8
- 作者:
Qingkai Yang;Hao Fang;Jie Chen;Zhong-Ping Jiang;Ming Cao - 通讯作者:
Ming Cao
Event-triggered stabilization of a class of nonlinear time-delay systems
一类非线性时滞系统的事件触发镇定
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:6.8
- 作者:
Pengpeng Zhang;Tengfei Liu;Zhong-Ping Jiang - 通讯作者:
Zhong-Ping Jiang
Hierarchical fusion of optical and dual-polarized SAR on impervious surface mapping at city scale
光学和双偏振 SAR 的分层融合在城市尺度不透水表面测绘上的应用
- DOI:
10.1016/j.isprsjprs.2021.12.008 - 发表时间:
2022 - 期刊:
- 影响因子:12.7
- 作者:
Genyun Sun;Ji Cheng;Aizhu Zhang;Zhong-Ping Jiang;Yanjuan Yao;Zhijun Jiao - 通讯作者:
Zhijun Jiao
Zhong-Ping Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhong-Ping Jiang', 18)}}的其他基金
Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-Physical-Human Systems
协作研究:CPS:小型:网络-物理-人类系统的集成反应式和主动式对抗学习
- 批准号:
2227153 - 财政年份:2022
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant
Collaborative Research: EPCN: Distributed Optimization-based Control of Large-Scale Nonlinear Systems with Uncertainties and Application to Robotic Networks
合作研究:EPCN:基于分布式优化的大型不确定性非线性系统控制及其在机器人网络中的应用
- 批准号:
2210320 - 财政年份:2022
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant
Collaborative Research: Designs and Theory for Event-Triggered Control with Marine Robotic Applications
合作研究:海洋机器人应用事件触发控制的设计和理论
- 批准号:
2009644 - 财政年份:2020
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant
Biologically-Inspired Robust Adaptive Dynamic Programming for Continuous-Time Stochastic Systems
连续时间随机系统的受生物学启发的鲁棒自适应动态规划
- 批准号:
1501044 - 财政年份:2015
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant
Collaborative Research: Hybrid Small-Gain Theorems for Nonlinear Networked and Quantized Control Systems
合作研究:非线性网络和量化控制系统的混合小增益定理
- 批准号:
1230040 - 财政年份:2012
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant
AIS: Entanglement of Approximate Dynamic Programming and Modern Nonlinear Control for Complex Systems
AIS:复杂系统的近似动态规划与现代非线性控制的纠缠
- 批准号:
1101401 - 财政年份:2011
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant
Collaborative Research: New Tools for Nonlinear Control Systems Analysis and Synthesis
合作研究:非线性控制系统分析与综合的新工具
- 批准号:
0906659 - 财政年份:2009
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant
Nonlinear Ship Control: An Opportunity for Applied Mathematicians
非线性船舶控制:应用数学家的机会
- 批准号:
0504462 - 财政年份:2005
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant
U.S.-China Cooperative Research: Control of complex nonlinear systems with applications
中美合作研究:复杂非线性系统控制及其应用
- 批准号:
0408925 - 财政年份:2004
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant
CAREER: Robust Nonlinear Control: Problems and Challenges from Communication Networks
职业:鲁棒非线性控制:通信网络的问题和挑战
- 批准号:
0093176 - 财政年份:2001
- 资助金额:
$ 29.36万 - 项目类别:
Continuing Grant
相似国自然基金
基于深度学习与蒙特卡罗算法的在线质子自适应放疗方法研究
- 批准号:12375359
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
车路云协同系统下基于机器学习的自适应信任评估机理研究
- 批准号:62362030
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于域自适应及半监督学习的眼底脉络膜结构提取与分析技术研究与应用
- 批准号:82371112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于视觉机器学习的水下无线光通信系统信道智能感知与自适应协同方法研究
- 批准号:62371058
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于组合策略优化的自适应光学自学习控制模型研究
- 批准号:62305280
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 29.36万 - 项目类别:
AI-BASED ADAPTIVE LEARNING in AR and VR ENVIRONMENT FOR ADVANCED CREW TRAINING TO ENHANCE MARITIME SAFETY
AR 和 VR 环境中基于人工智能的自适应学习,用于高级船员培训,以增强海上安全
- 批准号:
2872634 - 财政年份:2023
- 资助金额:
$ 29.36万 - 项目类别:
Studentship
Intelligent Science Stations: Developing Adaptive Mixed-Reality Technology to Enhance Inquiry-based STEM Learning in Schools
智能科学站:开发自适应混合现实技术以增强学校探究式 STEM 学习
- 批准号:
2300734 - 财政年份:2023
- 资助金额:
$ 29.36万 - 项目类别:
Continuing Grant
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 29.36万 - 项目类别:
Standard Grant