RII Track 2 FEC: Multi-Scale Integrative Approach to Digital Health: Collaborative Research and Education in Smart Health in West Virginia and Arkansas
RII Track 2 FEC:数字健康的多尺度综合方法:西弗吉尼亚州和阿肯色州智能健康的合作研究和教育
基本信息
- 批准号:1920920
- 负责人:
- 金额:$ 400万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One potential approach to improve overall health outcomes and reduce healthcare costs is through the use of artificial intelligence techniques that can exploit the enormous amount of information embedded in huge and diverse health-related datasets. To leverage this large amount and large variety of information the project will develop new methods to address core research questions in artificial intelligence. Specifically, this project will develop and disseminate computational methods to maintain privacy while analyzing large datasets, develop and disseminate measures and methods to increase the transparency of data analysis and thus increase trust in the analysis results, and develop and disseminate methods to measure and reduce bias in big data sets. While privacy, transparency and bias reduction are important aspects of artificial intelligence in general, addressing these topics is especially urgent for health-related data and applications. The long-term goal is to accelerate decision making for smart health applications, through the development and application of advanced artificial intelligence techniques that can take advantage of available massive heterogeneous health-related datasets in an unbiased way. Successful realization of this goal will have significant broader impacts by spurring economic activity through improved workforce development in key technology areas of data science, artificial intelligence, and smart health.This project proposes a collaboration involving five partner institutions in West Virginia and Arkansas, and seven target primarily undergraduate institutions across the two states. Innovation in the project stems from the proposed techniques addressing difficult research challenges in artificial intelligence and data analytics, such as privacy-preserving data analytics, novel explanation-centric artificial intelligence techniques, multiscale approaches to exploiting diverse and massive health datasets using heterogeneous information network embedding, and implementation of new multi-view patient profile algorithms. Further innovation comes from the proposed non-trivial adaptations of these techniques for rapid and accurate decision making in smart health, by using large-scale computational deep learning techniques. High school students will be involved in STEM-related activities, while undergraduate and graduate students will be trained on leading-edge artificial intelligence and big data techniques and how these can be adapted for smart health applications. Workshops and summer schools will be used to educate students and faculty on research topics being studied in the collaboration, and to provide practical hands-on training on popular artificial intelligence platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
改善整体健康结果和降低医疗成本的一种潜在方法是使用人工智能技术,该技术可以利用嵌入在庞大且多样化的健康相关数据集中的大量信息。为了利用大量且种类繁多的信息,该项目将开发新方法来解决人工智能的核心研究问题。 具体来说,该项目将开发和传播在分析大型数据集时维护隐私的计算方法,开发和传播提高数据分析透明度的措施和方法,从而增加对分析结果的信任,以及开发和传播测量和减少偏差的方法在大数据集中。 虽然隐私、透明度和减少偏见通常是人工智能的重要方面,但对于健康相关的数据和应用程序来说,解决这些主题尤为紧迫。长期目标是通过先进人工智能技术的开发和应用,加速智能健康应用的决策,这些技术可以以公正的方式利用可用的大量异构健康相关数据集。成功实现这一目标将通过改善数据科学、人工智能和智能健康等关键技术领域的劳动力发展来刺激经济活动,从而产生更广泛的影响。该项目提议与西弗吉尼亚州和阿肯色州的五个合作机构以及七个合作机构进行合作。主要针对两个州的本科院校。该项目的创新源于所提出的技术,解决人工智能和数据分析领域的困难研究挑战,例如隐私保护数据分析、新颖的以解释为中心的人工智能技术、使用异构信息网络嵌入来开发多样化和大规模健康数据集的多尺度方法,以及新的多视图患者档案算法的实施。进一步的创新来自于通过使用大规模计算深度学习技术对这些技术进行的重大调整,以实现智能健康领域快速而准确的决策。高中生将参与 STEM 相关活动,本科生和研究生将接受前沿人工智能和大数据技术以及如何将这些技术应用于智能健康应用的培训。研讨会和暑期学校将用于对学生和教师进行合作研究主题的教育,并提供流行人工智能平台的实际操作培训。该奖项反映了 NSF 的法定使命,经评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(80)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Blog Data Analytics Using Blogtrackers.
使用 Blogtrackers 进行博客数据分析。
- DOI:10.1007/978-3-030-67044-3_6
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Obadimu, A.;Hussain, M.N.;Agarwal, Nitin
- 通讯作者:Agarwal, Nitin
Achieving Differential Privacy in Vertically Partitioned Multiparty Learning
在垂直分区多方学习中实现差异隐私
- DOI:10.1109/bigdata52589.2021.9671502
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xu, Depeng;Yuan, Shuhan;Wu, Xintao
- 通讯作者:Wu, Xintao
Deep-Learning Models for the Echocardiographic Assessment of Diastolic Dysfunction
- DOI:10.1016/j.jcmg.2021.04.010
- 发表时间:2021-10-04
- 期刊:
- 影响因子:14
- 作者:Pandey, Ambarish;Kagiyama, Nobuyuki;Sengupta, Partho P.
- 通讯作者:Sengupta, Partho P.
Using Computational Social Science Techniques to Identify Coordinated Cyber Threats to Smart City Networks
使用计算社会科学技术识别智能城市网络的协调网络威胁
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Al-Assad, M;Spann, B;Al-khateeb, S;Agarwal, N
- 通讯作者:Agarwal, N
Evaluating Risk-Stratified HPV Catch-up Vaccination Strategies: Should We Go beyond Age 26?
评估风险分层 HPV 补种疫苗策略:我们应该超越 26 岁吗?
- DOI:10.1177/0272989x211042894
- 发表时间:2022
- 期刊:
- 影响因子:3.6
- 作者:Wang, Fan;Jozkowski, Kristen N.;Zhang, Shengfan
- 通讯作者:Zhang, Shengfan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Adjeroh其他文献
Understanding ChatGPT: Impact Analysis and Path Forward for Teaching Computer Science and Engineering
了解 ChatGPT:计算机科学与工程教学的影响分析和前进道路
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Paramarshi Banerjee;Anurag Srivastava;Donald Adjeroh;Y. R. Reddy;Nima Karimian;Ramana Reddy - 通讯作者:
Ramana Reddy
Donald Adjeroh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Adjeroh', 18)}}的其他基金
Collaborative Research: CISE-MSI: DP: III: Information Integration and Association Pattern Discovery in Precision Phenomics
合作研究:CISE-MSI:DP:III:精密表型组学中的信息集成和关联模式发现
- 批准号:
2318708 - 财政年份:2023
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
NRT-HDR: Bridges in Digital Health
NRT-HDR:数字健康的桥梁
- 批准号:
2125872 - 财政年份:2021
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Workshop: Community Building for Long Non-Coding RNA; Fall/Summer; Morgantown, WVA; Houston, TX
研讨会:长非编码RNA社区建设;
- 批准号:
1747788 - 财政年份:2018
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761792 - 财政年份:2018
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Social Media Based Analysis of Adverse Drug Events: User Modeling, Signal Reliability, and Signal Validation
III:小:协作研究:基于社交媒体的药物不良事件分析:用户建模、信号可靠性和信号验证
- 批准号:
1816005 - 财政年份:2018
- 资助金额:
$ 400万 - 项目类别:
Continuing Grant
SBP 2015 Outreach Efforts to Increase Diversity and Participation of Minorities
SBP 2015 旨在增加少数群体多样性和参与度的外展工作
- 批准号:
1523458 - 财政年份:2015
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: CRUFS: A Unified Framework for Social Media Analysis of Adverse Drug Events
EAGER:协作研究:CRUFS:药物不良事件社交媒体分析的统一框架
- 批准号:
1552860 - 财政年份:2015
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
SBP 2012 Outreach Efforts to Increase Diversity and Participation of Minorities
SBP 2012 旨在增加少数群体多样性和参与度的外展工作
- 批准号:
1225981 - 财政年份:2012
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Computational Public Drug Surveillance
EAGER:合作研究:计算公共药物监测
- 批准号:
1236983 - 财政年份:2012
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
U.S.-New Zealand and Australia Collaboration on Research for Data Compression
美国、新西兰和澳大利亚在数据压缩研究方面的合作
- 批准号:
0331896 - 财政年份:2004
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
相似国自然基金
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
- 批准号:62373344
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
- 批准号:62301296
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
- 批准号:72374125
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
- 批准号:52307021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: RII Track-2 FEC: Rural Confluence: Communities and Academic Partners Uniting to Drive Discovery and Build Capacity for Climate Resilience
合作研究:RII Track-2 FEC:农村融合:社区和学术合作伙伴联合起来推动发现并建设气候适应能力的能力
- 批准号:
2316366 - 财政年份:2023
- 资助金额:
$ 400万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
- 批准号:
2316128 - 财政年份:2023
- 资助金额:
$ 400万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Where We Live: Local and Place Based Adaptation to Climate Change in Underserved Rural Communities
合作研究:RII Track-2 FEC:我们居住的地方:服务不足的农村社区对气候变化的本地和地方适应
- 批准号:
2316126 - 财政年份:2023
- 资助金额:
$ 400万 - 项目类别:
Cooperative Agreement
RII Track-2 FEC: Community-Driven Coastal Climate Research & Solutions for the Resilience of New England Coastal Populations
RII Track-2 FEC:社区驱动的沿海气候研究
- 批准号:
2316271 - 财政年份:2023
- 资助金额:
$ 400万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: Supporting rural livelihoods in the water-stressed Central High Plains: Microbial innovations for climate-resilient agriculture (MICRA)
合作研究:RII Track-2 FEC:支持缺水的中部高原地区的农村生计:气候适应型农业的微生物创新 (MICRA)
- 批准号:
2316296 - 财政年份:2023
- 资助金额:
$ 400万 - 项目类别:
Cooperative Agreement