III: Small: Collaborative Research: High-Dimensional Machine Learning Methods for Personalized Cancer Genomics
III:小:协作研究:个性化癌症基因组学的高维机器学习方法
基本信息
- 批准号:1903202
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The key to success in personalized and precision cancer genomics lies in: (1) discovering and understanding the molecular-level mechanisms of how genetic alterations influence various cellular processes relevant to cancer, and (2) utilizing molecular signatures to tailor more personalized treatment strategies for patients. In order to achieve these goals, various high-throughput experimental methods have been developed in recent years to obtain information about a patient's cancer genome sequence, mRNA expression, protein expression, epigenetic readout, and other detailed information about a patient's tumor. However, algorithms that fully harness such a massive amount of high dimensional data to yield biomedical insights are often lacking. This project will advance the field of data-driven complex modeling of cancer genomic data for personalized cancer treatment by developing novel algorithms that use emerging and new techniques in high-dimensional machine learning. The results of this research have the potential to impact both the machine learning field and the computational genomics field. The educational components integrated with the research program will develop new curriculum materials, involve undergraduate students and underrepresented groups in research, and train a new generation of interdisciplinary graduate researchers. This project consists of two synergistic research thrusts to develop novel high-dimensional machine learning algorithms for analyzing high-throughput cancer genomic data. First, the project will develop high-dimensional graphical models for multi-view data modeling to integrate data from heterogeneous genome-wide data sources. Second, it will devise novel high-dimensional collaborative learning methods for personalized drug recommendation. The high-dimensional graphical models will be used to estimate networks for different cancer subtypes. These networks will then be integrated into the recommendation algorithms, which in turn will help improve the multi-view graphical model estimation. This project will enhance the ability to interpret large-scale cancer genomics data by pinpointing the roles of complex molecular interactions in cancer onset and progression, which will enable novel ways to more effectively discover personalized molecular signatures and more targeted potential treatments of cancer. Such technical innovation and conceptual advancement have the potential to reshape the way that one approaches graphical model estimation and its role in biological contexts. The project will potentially open up new possibilities for both theoreticians and practitioners in machine learning and computational biology as well as other disciplines.
个性化和精准癌症基因组学成功的关键在于:(1)发现和理解基因改变如何影响与癌症相关的各种细胞过程的分子水平机制,以及(2)利用分子特征为癌症量身定制更个性化的治疗策略。患者。为了实现这些目标,近年来开发了各种高通量实验方法来获取有关患者的癌症基因组序列、mRNA表达、蛋白质表达、表观遗传读数以及有关患者肿瘤的其他详细信息。然而,通常缺乏充分利用如此大量的高维数据来产生生物医学见解的算法。该项目将通过开发使用高维机器学习中新兴技术的新颖算法,推进癌症基因组数据的数据驱动复杂建模领域,以实现个性化癌症治疗。这项研究的结果有可能影响机器学习领域和计算基因组学领域。与研究计划相结合的教育部分将开发新的课程材料,让本科生和代表性不足的群体参与研究,并培养新一代跨学科研究生研究人员。该项目由两个协同研究重点组成,旨在开发用于分析高通量癌症基因组数据的新型高维机器学习算法。首先,该项目将开发用于多视图数据建模的高维图形模型,以集成来自异构全基因组数据源的数据。其次,它将设计用于个性化药物推荐的新颖的高维协作学习方法。高维图形模型将用于估计不同癌症亚型的网络。 然后这些网络将被集成到推荐算法中,这反过来将有助于改进多视图图形模型估计。该项目将通过查明复杂分子相互作用在癌症发病和进展中的作用,增强解释大规模癌症基因组学数据的能力,这将为更有效地发现个性化分子特征和更有针对性的潜在癌症治疗提供新方法。这种技术创新和概念进步有可能重塑图形模型估计及其在生物背景中的作用的方式。该项目有可能为机器学习、计算生物学以及其他学科的理论家和实践者开辟新的可能性。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tight Sample Complexity of Learning One-hidden-layer Convolutional Neural Networks
学习单隐层卷积神经网络的严格样本复杂度
- DOI:
- 发表时间:2019-11-12
- 期刊:
- 影响因子:0
- 作者:Yuan Cao;Quanquan Gu
- 通讯作者:Quanquan Gu
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
广深神经网络随机梯度下降的泛化界限
- DOI:
- 发表时间:2019-05-30
- 期刊:
- 影响因子:0
- 作者:Yuan Cao;Quanquan Gu
- 通讯作者:Quanquan Gu
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks
缩小自适应梯度方法在训练深度神经网络中的泛化差距
- DOI:
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Chen, Jinghui;Zhou, Dongruo;Tang, Yiqi;Yang, Ziyan;Cao, Yuan;Gu, Quanquan
- 通讯作者:Gu, Quanquan
Algorithm-Dependent Generalization Bounds for Overparameterized Deep Residual Networks
过度参数化深度残差网络的算法相关泛化界限
- DOI:
- 发表时间:2019-10-07
- 期刊:
- 影响因子:0
- 作者:Spencer Frei;Yuan Cao;Quanquan Gu
- 通讯作者:Quanquan Gu
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks
缩小自适应梯度方法在训练深度神经网络中的泛化差距
- DOI:10.24963/ijcai.2020/452
- 发表时间:2018-06-18
- 期刊:
- 影响因子:0
- 作者:Jinghui Chen;Yuan Cao;Quanquan Gu
- 通讯作者:Quanquan Gu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quanquan Gu其他文献
Optimal Online Generalized Linear Regression with Stochastic Noise and Its Application to Heteroscedastic Bandits
随机噪声下的最优在线广义线性回归及其在异方差强盗中的应用
- DOI:
- 发表时间:
2022-02-28 - 期刊:
- 影响因子:0
- 作者:
Heyang Zhao;Dongruo Zhou;Jiafan He;Quanquan Gu - 通讯作者:
Quanquan Gu
Pure Exploration in Asynchronous Federated Bandits
异步联邦强盗的纯粹探索
- DOI:
10.48550/arxiv.2310.11015 - 发表时间:
2023-10-17 - 期刊:
- 影响因子:0
- 作者:
Zichen Wang;Chuanhao Li;Chenyu Song;Lianghui Wang;Quanquan Gu;Huazheng Wang - 通讯作者:
Huazheng Wang
Differentially Private Hypothesis Transfer Learning
差分私有假设迁移学习
- DOI:
10.1007/978-3-030-10928-8_48 - 发表时间:
2018-09-10 - 期刊:
- 影响因子:0
- 作者:
Yang Wang;Quanquan Gu;Donald E. Brown - 通讯作者:
Donald E. Brown
Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic Shortest Path
学习线性混合随机最短路径的近极小极大最优遗憾
- DOI:
10.48550/arxiv.2402.08998 - 发表时间:
2024-02-14 - 期刊:
- 影响因子:0
- 作者:
Qiwei Di;Jiafan He;Dongruo Zhou;Quanquan Gu - 通讯作者:
Quanquan Gu
Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow
通过多相 Procrustes 流快速高效地完成归纳矩阵
- DOI:
- 发表时间:
2018-03-03 - 期刊:
- 影响因子:0
- 作者:
Xiao Zhang;S. Du;Quanquan Gu - 通讯作者:
Quanquan Gu
Quanquan Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quanquan Gu', 18)}}的其他基金
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312094 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
- 批准号:
2323113 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
III: Small: Towards the Foundations of Training Deep Neural Networks: New Theory and Algorithms
III:小:迈向训练深度神经网络的基础:新理论和算法
- 批准号:
2008981 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Rank Aggregation with Heterogeneous Information Sources: Efficient Algorithms and Fundamental Limits
CIF:小型:协作研究:异构信息源的排名聚合:高效算法和基本限制
- 批准号:
1911168 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Taming Big Networks via Embedding
BIGDATA:F:协作研究:通过嵌入驯服大网络
- 批准号:
1741342 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Taming Big Networks via Embedding
BIGDATA:F:协作研究:通过嵌入驯服大网络
- 批准号:
1855099 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization
职业:通过非凸统计优化扩大高维数据中的知识发现
- 批准号:
1906169 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
III: Small: Collaborative Learning with Incomplete and Noisy Knowledge
III:小:知识不完整且有噪音的协作学习
- 批准号:
1904183 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization
职业:通过非凸统计优化扩大高维数据中的知识发现
- 批准号:
1652539 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: High-Dimensional Machine Learning Methods for Personalized Cancer Genomics
III:小:协作研究:个性化癌症基因组学的高维机器学习方法
- 批准号:
1717206 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
- 批准号:82371229
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
- 批准号:82301369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异常激活的小胶质细胞通过上调CTSS抑制微血管特异性因子MFSD2A表达促进1型糖尿病视网膜病变的免疫学机制研究
- 批准号:82370827
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
- 批准号:82371419
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
- 批准号:82303616
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant