Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
基本信息
- 批准号:1902691
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims at understanding the propagation of waves in a wide sense. On the one hand, the PI will investigate the behavior of waves in space, as they interact nonlinearly with themselves and matter over large space-time scales. The ultimate goal is to explain how the energy, which is stored in a wave undergoing a nonlinear dynamical evolution, ultimately splits into quantized pieces and a wave "at the horizon". The latter refers to energy, possibly of large size, which is infinitely spread out and does not interact with anything in a noticeable fashion. In contrast with this macroscopic behavior, the project also aims at understanding the behavior of waves on the microscopic scale, such as in crystals or quasi-crystals. The goal is to explain transitions from an insulating state to that of a conductor, which these materials may exhibit as they undergo changes on the molecular level. Such changes may occur through the insertion of impurities, or changes in the environment. Both the macroscopic as well as the microscopic behavior of waves is of crucial importance to science and engineering, and profoundly affects our daily modern lives. Modern communication relies on waves transmitted over large distances both in space but also along glass fiber cables. For the latter the properties of the material are crucial and both nonlinear effects as well as aforementioned microscopic phenomena decide the suitability of the underlying medium. More technically speaking, the PI intends to further investigate the rigorous mathematical theory of focusing dispersive semilinear evolution equations. A major open problem is to analyze the resolution of any solution into moving solitons and radiation. Some success has been achieved in recent years on this important problem, but for nonintegrable equations we are far from a satisfactory understanding. The PI is currently involved in the study of this problem in the dissipative setting in which some damping is added to the equation. The Hamiltonian setting appears to be very difficult at the moment, especially in the subcritical regime. The methods involved derive from dynamical systems, invariant manifold theory, and dispersive PDEs. The quantum mechanical problems alluded in the previous paragraph belong to the area of Anderson localization. Together with his long-standing collaborator Michael Goldstein at Toronto, but also with young collaborators which are joining the field, the PI intends to bring the body of techniques which were developed over the past 20 years based on large deviation estimates, the avalanche principle, semi-algebraic sets, and harmonic analysis such as (pluri)subharmonic functions and the Cartan estimate, to bear on both linear and nonlinear problems in dynamical systems and spectral theory. Ultimately, the goal here is also to better describe the behavior of wave propagation in disordered media.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在从广义上理解波的传播。一方面,PI 将研究空间波的行为,因为它们在大时空尺度上与自身和物质进行非线性相互作用。最终目标是解释存储在经历非线性动力学演化的波中的能量如何最终分裂成量子化的部分和“地平线”的波。后者指的是能量,可能是大尺寸的,它无限分散并且不以明显的方式与任何事物相互作用。与这种宏观行为相反,该项目还旨在了解微观尺度上的波行为,例如晶体或准晶体中的波行为。目标是解释从绝缘状态到导体状态的转变,这些材料在分子水平上发生变化时可能会表现出这种转变。这种变化可能是通过杂质的插入或环境的变化而发生的。波的宏观和微观行为对于科学和工程都至关重要,并深刻影响着我们的日常生活。现代通信依赖于在太空和玻璃纤维电缆上长距离传输的波。对于后者,材料的特性至关重要,非线性效应以及上述微观现象决定了底层介质的适用性。从技术上讲,PI打算进一步研究聚焦色散半线性演化方程的严格数学理论。一个主要的开放问题是分析任何解决方案对移动孤子和辐射的分辨率。近年来在这个重要问题上已经取得了一些成功,但对于不可积方程我们还远远没有令人满意的理解。 PI 目前正在耗散环境中研究这个问题,其中在方程中添加了一些阻尼。目前,汉密尔顿设置似乎非常困难,尤其是在亚临界状态下。所涉及的方法源自动力系统、不变流形理论和色散偏微分方程。上一段提到的量子力学问题属于安德森局域化领域。 PI 打算与他在多伦多的长期合作者 Michael Goldstein 以及正在加入该领域的年轻合作者一起,将过去 20 年来基于大偏差估计、雪崩原理、半代数集,以及调和分析(例如(复)次调和函数和嘉当估计),以解决动力系统和谱理论中的线性和非线性问题。 最终,这里的目标也是更好地描述无序介质中波传播的行为。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An introduction to multiscale techniques in the theory of Anderson localization, Part I
安德森定位理论中的多尺度技术简介,第一部分
- DOI:10.1016/j.na.2022.112869
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Schlag; Wilhelm
- 通讯作者:Wilhelm
On Modified Scattering for 1D Quadratic Klein–Gordon Equations With Non-Generic Potentials
具有非泛势的一维二次克莱因-戈登方程的修正散射
- DOI:10.1093/imrn/rnac010
- 发表时间:2022-02
- 期刊:
- 影响因子:1
- 作者:Lindblad, Hans;Lührmann, Jonas;Schlag, Wilhelm;Soffer, Avy
- 通讯作者:Soffer, Avy
On pointwise decay of waves
关于波的逐点衰减
- DOI:10.1063/5.0042767
- 发表时间:2020-12-28
- 期刊:
- 影响因子:0
- 作者:W. Schlag
- 通讯作者:W. Schlag
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wilhelm Schlag其他文献
Global center stable manifold for the defocusing energy critical wave equation with potential
具有势的散焦能量临界波动方程的全局中心稳定流形
- DOI:
10.1049/cp.2012.1672 - 发表时间:
- 期刊:
- 影响因子:1.7
- 作者:
Hao Jia;Baoping Liu;Wilhelm Schlag;Guixiang Xu - 通讯作者:
Guixiang Xu
On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation
一维聚焦三次Klein-Gordon方程孤子的余维一稳定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jonas Lührmann;Wilhelm Schlag - 通讯作者:
Wilhelm Schlag
Non-perturbative localization for quasi-periodic Jacobi block matrices
准周期雅可比块矩阵的非微扰定位
- DOI:
10.1093/imrn/rnad006 - 发表时间:
2023-09-07 - 期刊:
- 影响因子:1
- 作者:
Rui Han;Wilhelm Schlag - 通讯作者:
Wilhelm Schlag
Invariant Manifolds and Dispersive Hamiltonian Evolution Equations
不变流形和色散哈密顿演化方程
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kenji Nakanishi;Wilhelm Schlag - 通讯作者:
Wilhelm Schlag
Asymptotic stability of the sine-Gordon kink under odd perturbations
奇数扰动下正弦戈登扭结的渐近稳定性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.5
- 作者:
Jonas Lührmann;Wilhelm Schlag - 通讯作者:
Wilhelm Schlag
Wilhelm Schlag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wilhelm Schlag', 18)}}的其他基金
Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
- 批准号:
2350356 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
- 批准号:
1842197 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
- 批准号:
1764384 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
- 批准号:
1500696 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Global dynamics for nonlinear dispersive equations
非线性色散方程的全局动力学
- 批准号:
1160817 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Harmonic Analysis, Mathematical Physics, and Nonlinear PDE
调和分析、数学物理和非线性偏微分方程
- 批准号:
0653841 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
- 批准号:
0617854 - 财政年份:2005
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
- 批准号:
0300081 - 财政年份:2003
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Nonperturbative methods for quasiperiodic discrete Schroedinger equations on the line
在线准周期离散薛定谔方程的非微扰方法
- 批准号:
0241930 - 财政年份:2002
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
面向光信息防护的光纤光学视界下非线性孤子碰撞动力学研究
- 批准号:62375080
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有竞争特征的非线性积分微分方程的动力学研究
- 批准号:12371174
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
模型与数据驱动的高维非线性结构降维方法及索/梁动力学应用
- 批准号:12372007
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
电驱动系统多场耦合机理与非线性动力学特性解析建模方法
- 批准号:52375105
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
运动边界激励下柔细管道动力学建模及非线性响应机理
- 批准号:12302028
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Generation mechanism of turbulence coherent structure by three-dimensional flow stability analysis applying nonlinear model
应用非线性模型进行三维流动稳定性分析的湍流相干结构生成机制
- 批准号:
19KK0373 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual