CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots

CHS:媒介:协作研究:用协作机器人增强人类认知

基本信息

  • 批准号:
    1900704
  • 负责人:
  • 金额:
    $ 41.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Collaborative robotics is a growing application space in robot technology used in manufacturing, mining, construction, and energy industrial settings. A recent report by the International Federation of Robots indicates that global robotics spending will reach $13 billion in 2025. The largest consumers of industrial robotics have been in the Asian market, i.e. China, Japan, Republic of Korea, with the U.S. lagging behind both Europe (Germany, France, Spain) and Asia. It is in the national economic and stratgic interest to ensure that US industry and workers regain leadership in collaborative manufacturing robots. Towards that goal, this project will develop understanding of technical and socio-technical requirements to accelerate the use of collaborative robotics. The project will contribute new knowledge and theory of Human-Computer Interaction and Human-Robot Interaction, by augmenting human cognition for safer and more efficient collaborative robot interaction. The new design principles for collaborative robotic technologies will improve both the worker and the employer's growth and progress. Fundamental knowledge gained here will be directly applicable in other high-risk domains that use collaborative robots, such as offshore oil rigs, military, and construction. The project seeks to empower new populations of workers (e.g., workers with disabilities), allow older workers to remain in the workforce, and potentially assist novice workers, thereby reducing skills gaps and improving work efficiency. The team will focus on broadening the participation of females in computing. In addition to traditional academic venues (e.g. conference, journals, etc.), research results will be further disseminated through workplace workshops and seminars through existing state, regional, and national networks of employers and industry partners. To meet these goals, the team of researchers plan to: (1) develop a novel HRI task/scenario classification scheme in collaborative robotics environments that are vulnerable to system failures; (2) establish fundamental neurophysiological, cognitive, and socio-behavioral models (workload, cognitive load, fatigue/stress, affect, and trust) to monitor and model the mind motor machine nexus; (3) use these models to determine when and how a human's cognitive, social, behavioral and environmental states require adjustment via technology to enhance HRI for efficient and safe work performance; and finally (4) create an innovative and transformative Work 4.0 architecture (AMELIA: AugMEnted Learning InnovAtion) that includes a layer of augmented reality for human and robots to mutually learn and communicate current states. The team will characterize worker cognitive states inferred from their physiological data and eye tracking. They will then use embedded sensor readings, error codes, and surveillance cameras to characterize robot states. Through augmented reality, AMELIA will provide this data to both the worker and the robot for effective real-time adjustment in behaviors to mitigate failure sources and errors while ensuring minimal additional cognitive load. The team plans a novel communication scheme using artificial emotional intelligence in which robots and humans collaborate in potentially dangerous situations. The robot will detect the worker's cognitive state using different machine learning techniques, and then take the appropriate action. Ultimately AMELIA seeks to empower the worker to focus on complex, cognitive problem-solving tasks, performed safely and efficiently, while ensuring that it adapts to both the worker's attitudes and cognitive states.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
协作机器人技术是制造、采矿、建筑和能源工业环境中机器人技术不断增长的应用空间。国际机器人联合会最近的一份报告显示,2025年全球机器人支出将达到130亿美元。工业机器人的最大消费者位于亚洲市场,即中国、日本、韩国,其中美国落后于欧洲(德国、法国、西班牙)和亚洲。确保美国工业和工人重新获得协作制造机器人的领导地位符合国家经济和战略利益。为了实现这一目标,该项目将加深对技术和社会技术要求的理解,以加速协作机器人的使用。 该项目将通过增强人类认知,实现更安全、更高效的协作机器人交互,贡献人机交互和人机交互的新知识和理论。 协作机器人技术的新设计原则将促进工人和雇主的成长和进步。在这里获得的基础知识将直接适用于使用协作机器人的其他高风险领域,例如海上石油钻井平台、军事和建筑。该项目旨在增强新工人群体(例如残疾工人)的权能,允许老年工人留在劳动力队伍中,并可能为新手工人提供帮助,从而缩小技能差距并提高工作效率。 该团队将致力于扩大女性在计算机领域的参与。 除了传统的学术场所(例如会议、期刊等)外,研究成果还将通过现有的州、地区和国家雇主和行业合作伙伴网络,通过工作场所讲习班和研讨会进一步传播。为了实现这些目标,研究团队计划:(1)在易受系统故障影响的协作机器人环境中开发一种新颖的 HRI 任务/场景分类方案; (2) 建立基本的神经生理学、认知和社会行为模型(工作量、认知负荷、疲劳/压力、情感和信任)来监测和建模思维运动机器关系; (3) 使用这些模型来确定人类的认知、社会、行为和环境状态何时以及如何需要通过技术进行调整,以增强 HRI,从而实现高效和安全的工作绩效;最后 (4) 创建一个创新和变革性的 Work 4.0 架构(AMELIA:AugMEnted Learning InnovAtion),其中包括一个增强现实层,供人类和机器人相互学习和交流当前状态。 该团队将根据生理数据和眼球追踪推断工人的认知状态。然后,他们将使用嵌入式传感器读数、错误代码和监控摄像头来表征机器人状态。通过增强现实,AMELIA 将向工人和机器人提供这些数据,以便有效地实时调整行为,以减少故障源和错误,同时确保最小的额外认知负荷。该团队计划了一种利用人工智能情感智能的新型通信方案,其中机器人和人类在潜在危险的情况下进行协作。机器人将使用不同的机器学习技术检测工人的认知状态,然后采取适当的行动。 最终,AMELIA 寻求让员工能够专注于复杂的认知问题解决任务,安全高效地执行,同时确保其适应员工的态度和认知状态。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of Cognitive Fatigue, Operator Sex, and Robot Assistance on Task Performance Metrics, Workload, and Situation Awareness in Human-Robot Collaboration
认知疲劳、操作员性别和机器人辅助对人机协作中任务绩效指标、工作量和态势感知的影响
  • DOI:
    10.1109/lra.2021.3062787
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Sarah K. Hopko;Riya Khurana;Ranjana K. Mehta;P. Pagilla
  • 通讯作者:
    P. Pagilla
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ranjana Mehta其他文献

On the Depth of Generalized Binomial Edge Ideals
论广义二项式边理想的深度
  • DOI:
    10.1007/s00009-024-02685-2
  • 发表时间:
    2024-01-12
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    J. Anuvinda;Ranjana Mehta;Kamalesh Saha
  • 通讯作者:
    Kamalesh Saha

Ranjana Mehta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ranjana Mehta', 18)}}的其他基金

B2: Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders (LEARNER)
B2:为下一代应急响应人员提供增强和机器人技术的学习环境(学习者)
  • 批准号:
    2349138
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Cooperative Agreement
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    2343187
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Continuing Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013122
  • 财政年份:
    2020
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
B2: Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders (LEARNER)
B2:为下一代应急响应人员提供增强和机器人技术的学习环境(学习者)
  • 批准号:
    2033592
  • 财政年份:
    2020
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Cooperative Agreement
RAPID: Human-Robotic Interactions During Harvey Recovery Operations
RAPID:哈维恢复操作期间的人机交互
  • 批准号:
    1760479
  • 财政年份:
    2017
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant

相似国自然基金

基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    2343187
  • 财政年份:
    2023
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Continuing Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
  • 批准号:
    2236644
  • 财政年份:
    2022
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
  • 批准号:
    2224258
  • 财政年份:
    2021
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Continuing Grant
CHS: Medium: Collaborative Research: Regional Experiments for the Future of Work in America
CHS:媒介:合作研究:美国未来工作的区域实验
  • 批准号:
    2243330
  • 财政年份:
    2021
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Continuing Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
  • 批准号:
    1955444
  • 财政年份:
    2020
  • 资助金额:
    $ 41.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了