Collaborative Research: Predicting Real-time Population Behavior during Hurricanes Synthesizing Data from Transportation Systems and Social Media

合作研究:综合交通系统和社交媒体数据预测飓风期间的实时人口行为

基本信息

项目摘要

This project develops new methods to forecast real-time population behavior during natural disasters, potentially transforming the current state of emergency response in a cost-effective way. To understand how individuals, infrastructure systems, and emergency services should prepare and respond during such disasters, this project utilizes data available from multiple sources including from transportation systems and online social media. Using innovative data science approaches to integrate data from multiple sources increases the quality of the data available for emergency response prediction and improved evacuation traffic management. Research outputs will be shared with the practitioner community to facilitate improved decision making for emergency agencies in hurricane evacuation and disaster management. This scientific research contribution thus supports NSF's mission to promote the progress of science and to advance our national welfare. In this case, the benefits will be insights to improve emergency response, which will save lives, economic losses, and reduce panic, anger and confusion during a future event.The project combines heterogeneous data sources from transportation systems and social media, in a unified framework-providing better information for modeling dynamic population behavior during hurricanes. To accurately predict evacuation demand, this project leverages large-scale real-time data, rarely used by existing emergency decision support tools. It advances the data science of disaster management by developing novel information fusion techniques to represent population and its behavior while employing government survey and social media data, text-mining approaches to extract evacuation intent from social media data, and evacuation traffic prediction models to optimize transportation resources. Through its innovative data gathering and modeling approaches, this project will enhance our ability to deal with future hurricanes. The project engages a broader participation of graduate and undergraduate students including from under-represented groups and plans a broader dissemination of results to traffic engineers and emergency management officials from local counties and cities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了预测自然灾害期间实时人口行为的新方法,有可能以具有成本效益的方式改变当前的应急响应状态。为了了解个人、基础设施系统和应急服务应如何在此类灾难中做好准备和应对,该项目利用了多个来源的数据,包括交通系统和在线社交媒体。使用创新的数据科学方法整合多个来源的数据可以提高可用于紧急响应预测和改进疏散交通管理的数据的质量。研究成果将与从业者社区分享,以促进应急机构在飓风疏散和灾害管理方面改进决策。因此,这项科学研究贡献支持了 NSF 促进科学进步和增进国家福祉的使命。在这种情况下,好处将是改善应急响应的洞察力,这将挽救生命、经济损失,并减少未来事件中的恐慌、愤怒和困惑。该项目将来自交通系统和社交媒体的异构数据源结合在一个统一的数据源中。框架 - 为飓风期间动态人口行为建模提供更好的信息。为了准确预测疏散需求,该项目利用了现有应急决策支持工具很少使用的大规模实时数据。它通过开发新颖的信息融合技术来代表人口及其行为,同时利用政府调查和社交媒体数据、文本挖掘方法从社交媒体数据中提取疏散意图,以及疏散交通预测模型来优化交通,从而推进灾害管理的数据科学。资源。通过其创新的数据收集和建模方法,该项目将增强我们应对未来飓风的能力。该项目吸引了更广泛的研究生和本科生的参与,包括来自代表性不足群体的学生,并计划向当地县市的交通工程师和应急管理官员更广泛地传播成果。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessing the crash risks of evacuation: A matched case-control approach applied over data collected during Hurricane Irma
评估疏散的崩溃风险:对飓风艾尔玛期间收集的数据应用匹配的病例对照方法
  • DOI:
    10.1016/j.aap.2021.106260
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Rahman, Rezaur;Bhowmik, Tanmoy;Eluru, Naveen;Hasan, Samiul
  • 通讯作者:
    Hasan, Samiul
Local emergency management's use of social media during disasters: a case study of Hurricane Irma
当地应急管理部门在灾害期间对社交媒体的使用:飓风艾尔玛的案例研究
  • DOI:
    10.1111/disa.12544
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Knox, Claire Connolly
  • 通讯作者:
    Knox, Claire Connolly
Exploring network properties of social media interactions and activities during Hurricane Sandy
  • DOI:
    10.1016/j.trip.2020.100143
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sandy;A. M. Sadri;Samiul Hasan;S. Ukkusuri;Manuel Cebrian
  • 通讯作者:
    Sandy;A. M. Sadri;Samiul Hasan;S. Ukkusuri;Manuel Cebrian
Data-Driven Traffic Assignment: A Novel Approach for Learning Traffic Flow Patterns Using Graph Convolutional Neural Network
  • DOI:
    10.1007/s42421-023-00073-y
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rezaur Rahman;Samiul Hasan
  • 通讯作者:
    Rezaur Rahman;Samiul Hasan
Towards reducing the number of crashes during hurricane evacuation: Assessing the potential safety impact of adaptive cruise control systems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samiul Hasan其他文献

Philanthropy and Social Justice in Islam: Principles, Prospects, and Practices
伊斯兰教的慈善事业和社会正义:原则、前景和实践
Modeling urban mobility dynamics using geo-location data
使用地理位置数据对城市流动动态进行建模
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samiul Hasan
  • 通讯作者:
    Samiul Hasan
Crisis Communication Patterns in Social Media during Hurricane Sandy
桑迪飓风期间社交媒体的危机沟通模式
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    A. M. Sadri;Samiul Hasan;S. Ukkusuri;Manuel Cebrian
  • 通讯作者:
    Manuel Cebrian
Social-media-based crisis communication: Assessing the engagement of local agencies in Twitter during Hurricane Irma
基于社交媒体的危机沟通:评估飓风艾尔玛期间当地机构在 Twitter 中的参与情况
Human Development: Perspectives, Gaps, and Issues for the MMCs
人类发展:MMC 的观点、差距和问题
  • DOI:
    10.1007/978-94-007-2633-8_3
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samiul Hasan
  • 通讯作者:
    Samiul Hasan

Samiul Hasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samiul Hasan', 18)}}的其他基金

CRISP 2.0 Type 2: Collaborative Research: Organizing Decentralized Resilience in Critical Interdependent-infrastructure Systems and Processes (ORDER-CRISP)
CRISP 2.0 类型 2:协作研究:在关键的相互依赖的基础设施系统和流程中组织去中心化的弹性 (ORDER-CRISP)
  • 批准号:
    1832578
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

基于AI的Ⅱ型糖尿病药物响应预测和个体用药方案推荐研究
  • 批准号:
    82373790
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于fMRI大尺度时变网络变异性的个体ERP波形预测研究
  • 批准号:
    82372084
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
利用深度学习方法开发创新高精度城市风速及污染物扩散的预测模型研究
  • 批准号:
    42375193
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
多因素耦合作用下的高原寒旱区动车组关键部件剩余寿命自适应预测方法研究
  • 批准号:
    72361019
  • 批准年份:
    2023
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目
基于可解释机器学习的科学知识角色转变预测研究
  • 批准号:
    72304108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
  • 批准号:
    2343204
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330759
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
  • 批准号:
    2343203
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330760
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了