Collaborative Research: Asymptotic Statistical Inference for High-dimensional Time Series

合作研究:高维时间序列的渐近统计推断

基本信息

  • 批准号:
    1916351
  • 负责人:
  • 金额:
    $ 19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The information era has witnessed an explosion in the collection of high dimensional time series data across a wide range of areas, including finance, signal processing, neuroscience, meteorology, seismology, among others. For low dimensional time series, there is a well-developed estimation and inference theory. Inference theory in the high dimensional setting is of fundamental importance and has wide applications, but has been rarely studied. Researchers face a number of challenges in solving real-world problems: (i) complex dynamics of data generating systems, (ii) temporal and cross-sectional dependencies, (iii) high dimensionality and (iv) non-Gaussian distributions. The goal of this project is to develop and advance inference theory for high dimensional time series data by concerning all the above characteristics. The project will provide training to graduate students and publicly avaialble statistical packages. This project involves developing a systematic asymptotic theory for estimation and inference for high dimensional time series, including parameter estimation, construction of simultaneous confidence intervals, prediction, model selection, Granger causality test, hypothesis testing, and spectral domain estimation. To this end, a new methodology for the estimation of parameters and second-order characteristics for high dimensional time series will be proposed. New tools and concentration inequalities for the asymptotic analysis of high-dimensional time series will be developed. To perform simultaneous inference and significance testing, the PIs will investigate the very deep Gaussian approximation problem and the high dimensional central limit theorems by taking both high dimensionality and temporal and cross-sectional dependencies into account.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信息时代见证了金融、信号处理、神经科学、气象学、地震学等广泛领域高维时间序列数据收集的爆炸式增长。对于低维时间序列,有成熟的估计和推断理论。高维环境中的推理理论具有基础重要性并具有广泛的应用,但研究很少。研究人员在解决现实世界问题时面临着许多挑战:(i)数据生成系统的复杂动态,(ii)时间和横截面依赖性,(iii)高维性和(iv)非高斯分布。该项目的目标是通过考虑所有上述特征来开发和推进高维时间序列数据的推理理论。该项目将为研究生提供培训并提供公开的统计数据包。该项目涉及开发用于高维时间序列估计和推理的系统渐近理论,包括参数估计、同时置信区间的构建、预测、模型选择、格兰杰因果检验、假设检验和谱域估计。为此,将提出一种新的高维时间序列参数和二阶特征估计方法。将开发用于高维时间序列渐近分析的新工具和集中不等式。为了同时进行推理和显着性测试,PI 将通过考虑高维性以及时间和横截面依赖性来研究非常深的高斯近似问题和高维中心极限定理。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Biao Wu其他文献

Simultaneous Confidence Bands in Nonlinear Regression Models with Nonstationarity
非平稳非线性回归模型中的联立置信带
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Degui Li;Weidong Liu;Qiying Wang;Wei Biao Wu
  • 通讯作者:
    Wei Biao Wu
ℓ2 inference for change points in high-dimensional time series via a Two-Way MOSUM
ℓ2 通过双向 MOSUM 推断高维时间序列中的变化点
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Jiaqi Li;Likai Chen;Weining Wang;Wei Biao Wu
  • 通讯作者:
    Wei Biao Wu
Asymptotic theory for QMLE for the real‐time GARCH(1,1) model
实时 GARCH(1,1) 模型的 QMLE 渐近理论
Recursive estimation of time-average variance constants
时间平均方差常数的递归估计
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Biao Wu
  • 通讯作者:
    Wei Biao Wu

Wei Biao Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Biao Wu', 18)}}的其他基金

Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311249
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Inference of Human Dynamics from High-Dimensional Data Streams: Community Discovery and Change Detection
ATD:协作研究:从高维数据流推断人类动力学:社区发现和变化检测
  • 批准号:
    2027723
  • 财政年份:
    2020
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Second Order Inference for High-Dimensional Time Series and Its Applications
合作研究:高维时间序列的二阶推理及其应用
  • 批准号:
    1405410
  • 财政年份:
    2014
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Covariance Matrix Estimation in Time Series and Its Applications
时间序列中的协方差矩阵估计及其应用
  • 批准号:
    1106790
  • 财政年份:
    2011
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Statistical Inference of Models with Time-Varying Parameters
时变参数模型的统计推断
  • 批准号:
    0906073
  • 财政年份:
    2009
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
CAREER: Asymptotics of random processes and their applications
职业:随机过程的渐近及其应用
  • 批准号:
    0448704
  • 财政年份:
    2005
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于非渐近估计的复杂微电网故障诊断与运行稳定性控制理论研究
  • 批准号:
    62303133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高速列车多场景下运行模型最优辨识及渐近全驱协同控制理论研究
  • 批准号:
    62373311
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
表示函数与渐近基相关问题的研究
  • 批准号:
    12301003
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带奇异系数的多尺度随机(偏)微分方程的渐近行为研究
  • 批准号:
    12301179
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玻尔兹曼方程的量子渐近保持算法研究
  • 批准号:
    12301561
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
  • 批准号:
    2210505
  • 财政年份:
    2022
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
  • 批准号:
    2210506
  • 财政年份:
    2022
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Approximations for Sequential Decision Problems in Econometrics
合作研究:计量经济学中序列决策问题的渐近逼近
  • 批准号:
    2117260
  • 财政年份:
    2021
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Approximations for Sequential Decision Problems in Econometrics
合作研究:计量经济学中序列决策问题的渐近逼近
  • 批准号:
    2117261
  • 财政年份:
    2021
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
  • 批准号:
    2023499
  • 财政年份:
    2020
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了