Understanding the Fundamental Mechanisms Governing Tensile Strength of High-Performance Small-Scale Carbon/Glass Fibers

了解控制高性能小型碳/玻璃纤维拉伸强度的基本机制

基本信息

项目摘要

This project is jointly funded by the Mechanics of Materials and Structures program and the Established Program to Stimulate Competitive Research (EPSCoR). High performance carbon and glass fibers are widely used as reinforcements in composite material systems for automotive, aerospace and defense applications. The tensile strength of commercial fibers is significantly less than its theoretical limits. The composite systems are often overdesigned, thus any increase in the fiber tensile strength can yield significant cost and weight savings. Modifications of fiber surface treatment (sizing) during manufacturing is a potential route to enhance the fiber strength. Single fiber tensile testing at millimeter-scale is typically used to characterize the effect of sizing on the fiber strength. However, the longitudinal tensile failure of a composite is governed by the fiber strength distribution and defects at microscale lengths. This award supports the fundamental research that overcomes current challenges in characterizing the tensile strength of the fibers at the microscale using experimental and data-driven computational methods. Besides the scientific understanding, this project will also provide a guiding template for the fiber manufacturing process through controlled surface treatment. A direct consequence of improving the tensile strength would be lightweight structures for applications in aerospace, automotive, and sports equipment sectors. As part of this project, a specific effort will also be aimed at recruiting graduate and undergraduate students from under-represented groups through the Society for Women Engineers at the University of South Carolina. Furthermore, the experimental setup developed in this research will be incorporated into a lab course for undergraduate students.A comprehensive understanding of the discrepancy between experimental tensile strength of commercial fibers and its theoretical limits has been elusive, and whether intrinsic fiber strength follows a Weibull statistical distribution remains an open question. This research aims to elucidate the fundamental mechanisms that govern the tensile strength of fibers at microscale gage lengths. Experimental and data-driven techniques will be employed to study the strength distribution of the fibers at microscales. Microscale gage lengths will be accessed by developing a novel in situ transverse loading experiment on single fibers under scanning electron microscope combined with micro-digital image correlation. Data-driven machine learning techniques will be applied to establish the scaling laws of strength. This research will provide new insights into the functional form of the survival probability and strength-controlling mechanisms in fibers influenced by fiber sizing. This new fundamental knowledge of processing (sizing)-structure (defect distribution)-property (tensile strength distribution) relationship at microscale lengths will enable the establishment of scaling laws for strength and will serve as a guide for fiber manufacturing process to enhance the fiber tensile strength.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由材料与结构力学计划和刺激竞争性研究既定计划(EPSCoR)共同资助。高性能碳纤维和玻璃纤维广泛用作汽车、航空航天和国防应用的复合材料系统的增强材料。商业纤维的拉伸强度明显低于其理论极限。复合材料系统通常经过过度设计,因此纤维拉伸强度的任何增加都可以显着节省成本和重量。在制造过程中对纤维表面处理(施胶)进行修改是提高纤维强度的潜在途径。毫米级单纤维拉伸测试通常用于表征施胶对纤维强度的影响。然而,复合材料的纵向拉伸失效受纤维强度分布和微米级长度缺陷的控制。该奖项支持基础研究,克服当前使用实验和数据驱动的计算方法在微观尺度上表征纤维拉伸强度的挑战。除了科学认识外,该项目还将通过受控表面处理为纤维制造工艺提供指导模板。提高拉伸强度的直接结果是为航空航天、汽车和运动器材领域的应用提供轻质结构。作为该项目的一部分,还将开展一项具体工作,旨在通过南卡罗来纳大学女工程师协会从代表性不足的群体中招募研究生和本科生。此外,本研究开发的实验装置将纳入本科生的实验课程中。对商业纤维的实验拉伸强度与其理论极限之间的差异的全面理解一直难以捉摸,以及内在纤维强度是否遵循威布尔统计分配仍然是一个悬而未决的问题。这项研究旨在阐明控制微标距纤维拉伸强度的基本机制。将采用实验和数据驱动技术来研究微观尺度上纤维的强度分布。将通过在扫描电子显微镜下结合微数字图像相关性对单纤维进行新型原位横向加载实验来获得微尺度标距长度。将应用数据驱动的机器学习技术来建立强度的缩放定律。这项研究将为受纤维尺寸影响的纤维中的存活概率和强度控制机制的功能形式提供新的见解。这种关于微尺度长度上的加工(上浆)-结构(缺陷分布)-性能(拉伸强度分布)关系的新基础知识将有助于建立强度缩放定律,并将作为纤维制造工艺提高纤维拉伸强度的指南该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sub-microscale speckle pattern creation on single carbon fibers for in-situ DIC experiments
用于原位 DIC 实验的单碳纤维上的亚微米级散斑图案创建
Sub-microscale speckle pattern creation on single carbon fibers for scanning electron microscope-digital image correlation (SEM-DIC) experiments
  • DOI:
    10.1016/j.compositesa.2022.107331
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karan Shah;S. Sockalingam;H. O'Brien;G. Yang;Mohammad El Loubani;Dongkyu Lee;M. Sutton
  • 通讯作者:
    Karan Shah;S. Sockalingam;H. O'Brien;G. Yang;Mohammad El Loubani;Dongkyu Lee;M. Sutton
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Subramani Sockalingam其他文献

Subramani Sockalingam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Subramani Sockalingam', 18)}}的其他基金

Fundamental Studies of Process-Material Interactions in Advanced Adhesion-Driven Manufacturing with Automated Placement of Uncured Thermoset Tows as Model Process
以自动放置未固化热固性丝束作为模型工艺的先进粘合驱动制造中工艺与材料相互作用的基础研究
  • 批准号:
    2127361
  • 财政年份:
    2022
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant

相似国自然基金

基于石墨间层质心插入理论的插层化学基本反应机制研究
  • 批准号:
    22379110
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于体型结构单体的深度纯化介质构建机制与高纯洁净基本原理的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自我决定理论的基层医生服务动机内化对基本医疗服务质量的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于视觉工作记忆基本单元探究轻度认知障碍记忆受损的机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
新时代中国西部深内陆城市的全球化研究:基本路径、全球网络和动力机制
  • 批准号:
    41971198
  • 批准年份:
    2019
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions
了解纳米神经相互作用的基本机制
  • 批准号:
    2331330
  • 财政年份:
    2024
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant
Understanding Fundamental Mechanisms in Gas Sensing to Aid Future Design
了解气体传感的基本机制以帮助未来的设计
  • 批准号:
    2247996
  • 财政年份:
    2019
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Studentship
CAREER: Understanding the fundamental mechanisms of vesiculation and solute encapsulation of smectic phospholipid films on cellulose
职业:了解纤维素上近晶磷脂膜的囊泡化和溶质封装的基本机制
  • 批准号:
    1848573
  • 财政年份:
    2019
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Continuing Grant
GOALI: Enabling Ultra-Low Viscosity Lubricants Through Fundamental Understanding of Additive Interactions and Tribofilm Growth Mechanisms: An In-Situ Study
GOALI:通过对添加剂相互作用和摩擦膜生长机制的基本了解,实现超低粘度润滑剂:原位研究
  • 批准号:
    1728360
  • 财政年份:
    2017
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Standard Grant
Understanding the fundamental mechanisms of viral activation in the host
了解宿主病毒激活的基本机制
  • 批准号:
    418127-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 51.16万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了