EAR-PF: Shear Wave Splitting based on 3D Seismic Wave Simulations: Forward to Inverse Modeling of Upper Mantle and D" Anisotropy

EAR-PF:基于 3D 地震波模拟的剪切波分裂:上地幔和 D" 各向异性的逆向建模

基本信息

  • 批准号:
    1855206
  • 负责人:
  • 金额:
    $ 8.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Dr. Neala Creasy has been granted an NSF EAR postdoctoral fellowship to carry out research and educational plans at Colorado School of Mines (CSM). She will investigate how the Earth's mantle deforms under high pressures and temperatures by making use of the seismic waves produced by earthquakes. Interpreting these seismic waves and how they directly relate to these deformation and mineralogical processes within the mantle is difficult, in part due to necessary assumptions and fundamental limitations inherent to mineral physics experiments at high pressures and temperatures. She will calculate synthetic waveforms for a 3D, realistic Earth to explore how seismic observations relate to mantle deformation. While some prior research has explored the viability of some of the assumptions used to simplify these observations, there are many additional aspects that need to be fully explored to fully understand the complexity of the Earth. Understanding how the Earth deforms via mantle convection is important because this deformation controls the surface expression of plate tectonics, in the form of volcanic activity and earthquakes. This research will help clarify the general understanding of how to use seismic waves to their full potential in understanding current processes in Earth's mantle. Her educational plan involves acting as a research mentor for graduate and undergraduate students at CSM, creating educational material (e.g., infographics, teaching materials) and a Virtual Reality (VR) setup to excite young scientists to pursue basic science, and continued outreach efforts in the local community through organizations including IRIS (Incorporated Research Institutions of Seismology undergraduate internship program) and the Denver Museum of Science. Constraining the pattern and properties of seismic anisotropy in the Earth can help reveal relationships between mineral physics, mantle convection, and seismology. Sources of anisotropy in the lithosphere as frozen-in anisotropy, transition zone, and D" complicate shear wave splitting measurements, resulting in shear wave splitting that can differ from plate motion. If we better understand seismic anisotropy sourced in the lithosphere, we could also better constrain D" anisotropy, which requires correcting for the upper mantle to some extent. Ray theory is commonly used and is appropriate within certain limits, but not all implications have been explored. Ray theory is an infinite frequency approximation and its validity depends on the period of waves, the scale of heterogeneities, the length of its propagation path, and the superposition of multiple arrivals, making interpreting seismic anisotropy observations more difficult. Numerical methods and advances in high-performance computing offer new opportunities to take the full physics of wave propagation into account using realistic 3D Earth structures while conducting seismological observational studies. In this work, Dr. Creasy will explore the assumptions made in shear wave splitting as well as tease out discrepancies between different models and observations of anisotropy within the Earth, by conducting numerical simulations via 3D global wave propagation solver SPECFEM3D_GLOBE. This work will help improve the understanding of how seismic anisotropy observations are related to models of deformation in the Earth's mantle and the sources of anisotropy in the various regions of the crust, upper mantle, and D". These insights will help illuminate discrepancies between different seismic anisotropy observational techniques on regional (e.g. North America and Australia) and global scales. This work will also assist the development of using shear wave splitting in global full waveform inversion addressing appropriate parametrization to describe body-wave anisotropy in the mantle during the inversion process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Neala Creasy 博士已获得 NSF EAR 博士后奖学金,在科罗拉多矿业学院 (CSM) 开展研究和教育计划。她将利用地震产生的地震波来研究地幔在高压和高温下如何变形。解释这些地震波以及它们如何与地幔内的这些变形和矿物学过程直接相关是很困难的,部分原因是高压和高温下矿物物理实验固有的必要假设和基本限制。她将计算 3D 真实地球的合成波形,以探索地震观测与地幔变形的关系。虽然之前的一些研究已经探索了用于简化这些观测的一些假设的可行性,但还需要充分探索许多其他方面才能充分了解地球的复杂性。了解地球如何通过地幔对流变形非常重要,因为这种变形以火山活动和地震的形式控制着板块构造的表面表现。这项研究将有助于阐明如何充分利用地震波来理解地幔当前过程的一般理解。她的教育计划包括担任 CSM 研究生和本科生的研究导师,创建教育材料(例如信息图表、教材)和虚拟现实 (VR) 设置,以激发年轻科学家追求基础科学,并继续在以下领域开展外展工作:通过 IRIS(地震学研究机构联合本科生实习计划)和丹佛科学博物馆等组织向当地社区提供帮助。限制地球地震各向异性的模式和特性有助于揭示矿物物理学、地幔对流和地震学之间的关系。岩石圈中各向异性的来源,如冻结各向异性、过渡带和 D",使剪切波分裂测量变得复杂,导致剪切波分裂可能与板块运动不同。如果我们更好地了解源自岩石圈的地震各向异性,我们也可以更好地约束D"各向异性,这需要对上地幔进行一定程度的校正。射线理论被广泛使用,并且在一定范围内是合适的,但并未探讨所有的含义。射线理论是无限频率近似,其有效性取决于波的周期、非均质性的大小、传播路径的长度以及多次到达的叠加,这使得解释地震各向异性观测变得更加困难。数值方法和高性能计算的进步提供了新的机会,可以在进行地震观测研究时使用真实的 3D 地球结构来考虑波传播的全部物理原理。在这项工作中,Creasy 博士将通过 3D 全局波传播解算器 SPECFEM3D_GLOBE 进行数值模拟,探索剪切波分裂的假设,并梳理不同模型和地球内部各向异性观测之间的差异。这项工作将有助于加深对地震各向异性观测如何与地幔变形模型以及地壳、上地幔和 D" 各个区域的各向异性来源之间的关系的理解。这些见解将有助于阐明不同区域之间的差异区域(例如北美和澳大利亚)和全球尺度的地震各向异性观测技术这项工作还将有助于在全球全波形反演中使用剪切波分裂来解决适当的参数化问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neala Creasy其他文献

Neala Creasy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

丘脑束旁核至背内侧纹状体(Pf-DMS)痕迹环路介导可卡因成瘾及电针耳穴干预的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“IS/HIF-1α”介导的低氧感应失败探讨缓衰方对慢性肾脏病PD-PF的治疗机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
致病性大肠杆菌耐药质粒编码的毒素-抗毒素系统ParE/PF02604的功能研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
PF4/CXCR3轴调控Tfh1细胞分化介导ITP发病的机制研究
  • 批准号:
    82172335
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
  • 批准号:
    2339711
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Continuing Grant
PF-ILDのフラクタル解析とCNN学習モデルを用いた画像診断研究
基于PF-ILD分形分析和CNN学习模型的图像诊断研究
  • 批准号:
    24K10916
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
  • 批准号:
    2305217
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: Feedbacks Between Controls of Stream Dry-Down Responses at the Rain-Snow Transition
博士后奖学金:EAR-PF:雨雪转变时河流干涸响应控制之间的反馈
  • 批准号:
    2305601
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: EAR-PF: Assessing the net climate impact of tropical peatland restoration: the role of methane
博士后奖学金:EAR-PF:评估热带泥炭地恢复对气候的净影响:甲烷的作用
  • 批准号:
    2305578
  • 财政年份:
    2024
  • 资助金额:
    $ 8.7万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了