Collaborative Research: Understanding Run-In and Superlubricity of Diamond-Like Carbon Coatings from a Tribochemical Perspective

合作研究:从摩擦化学角度理解类金刚石碳涂层的磨合和超润滑性

基本信息

  • 批准号:
    1912210
  • 负责人:
  • 金额:
    $ 5.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Smartphone screens are an impressive example of how new technologies often rely on surface engineering, such as the ability to create durable, hard and slippery surfaces. Many key economic sectors can benefit from minimized wear and friction of surfaces, including the automotive, medical device, computer component and defense sectors, so that this research directly and positively impacts the economic welfare and national security of the United States. Recently, a hard surface coating known as diamond-like carbon (DLC) has been found to achieve an extreme level of slipperiness called "superlubricity". This desirable property is, however, very sensitive to environmental conditions such as the amount of water or hydrogen in the surrounding atmosphere. Sensitivity to environmental conditions limits the effectiveness of the coating for many potential applications. This collaborative research aims to understand the chemical reactions that govern superlubricity in DLC and to discover ways to extend its high performance to a wider range of conditions. The collaborators at Penn State and St. Olaf College specialize in measuring friction using different state-of-the-art methods that complement each other. The broader impacts of this study extend to training the next generation of scientists in the United States by supporting student participation in the research. Educational activities will include outreach for underrepresented minority recruitment at Penn State and undergraduates at St. Olaf, instruction of undergraduates in friction-related physics at St. Olaf, instruction in DLC surface properties for a graduate course at Penn State, surface characterization tutorials in professional conferences, and student participation in international collaborations. Due to its amorphous nature, the carbon atoms in DLC have very broad distributions in bond length and angle. The covalent bonds in DLC are formed during the high-energy deposition process and cannot be relaxed or rearranged without annealing at extremely high temperatures. This means that the lengths and angles of many bonds in DLC deviate significantly from the minimum-energy structure of ideal sp2 and sp3 hybridization. Those bonds are weaker and more reactive compared to the bonds with parameters close to the ideal structures. Such broad distributions in bond parameters and reactivities are intrinsic parameters specific to each DLC coating and its deposition conditions. The main thesis of this study is that the presence of highly-distorted carbon-carbon bonds facilitates a mechanochemically-induced polymorphic transition to graphitic domains at the shearing interface. Under this hypothesis, the run-in process can be attributed to the shear-induced mechanochemical transformation of the distorted carbon networks to graphitic (or graphene-like) domains. The transformation process will also be affected by reactions with molecules impinging from the gas phase. These surface reactions with surrounding gas molecules are extrinsic parameters affecting the run-in and superlubricity of DLC. A mechanically-assisted thermal activation (Arrhenius-type) model will be combined with structural characterization to study how the intrinsic and extrinsic parameters facilitate or hamper the shear-induced mechanochemical transformation of the DLC interface to graphitic domains with ultra-low shear resistance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智能手机屏幕是新技术通常如何依赖地表工程的一个令人印象深刻的例子,例如能够创建耐用,坚硬和湿滑的表面。许多关键的经济部门可以从最小化的磨损和摩擦力中受益,包括汽车,医疗设备,计算机组件和防御部门,因此这项研究直接和积极地影响了美国的经济福利和国家安全。最近,发现一种称为钻石样碳(DLC)的硬表面涂层达到了一种极端的滑水,称为“超级润滑性”。然而,这种理想的特性非常敏感,例如环境条件,例如周围大气中的水或氢的数量。对环境条件的敏感性限制了许多潜在应用的涂层的有效性。这项协作研究旨在了解控制DLC上级润滑性的化学反应,并发现将其高性能扩展到更广泛条件的方法。 宾夕法尼亚州立大学和圣奥拉夫学院的合作者专门使用彼此补充的不同最先进的方法来测量摩擦。这项研究的更广泛的影响扩展到培训美国下一代科学家,通过支持学生参与研究。教育活动将包括在宾夕法尼亚州立大学的少数族裔招募和本科生的教育活动,圣奥拉夫的本科生的本科生指导,在宾夕法尼亚州立大学的DLC Surface Properties指导宾夕法尼亚州立大学的教学,专业会议中的表面表征教程,并参与了国际合作。由于其无定形性,DLC中的碳原子的键长和角度具有非常广泛的分布。 DLC中的共价键是在高能沉积过程中形成的,不能在高温下退火而放松或重新排列。这意味着DLC中许多键的长度和角度显着偏离了理想SP2和SP3杂交的最小能量结构。与接近理想结构的参数相比,这些键更弱且更具反应性。键参数和反应性中的这种广泛分布是每个DLC涂层及其沉积条件的内在参数。这项研究的主要论点是,高度延伸的碳键的存在促进了机械化学诱导的多态性过渡到剪切界面处的石墨结构域。在此假设下,磨合过程可以归因于剪切诱导的碳网络向石墨(或石墨烯状)域的机械化学转换。转化过程也将受气相撞击的分子的反应影响。这些与周围气体分子的表面反应是影响DLC磨合和超级润滑性的外部参数。机械辅助的热激活(ARRHENIUS型)模型将与结构表征相结合,以研究固有和外在参数如何促进或阻碍剪切诱导的DLC界面机械化学转化的机械化学转化,使得型智力奖励的智力奖励。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Empirical relationship between interfacial shear stress and contact pressure in micro- and macro-scale friction
  • DOI:
    10.1016/j.triboint.2020.106780
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    He, Xin;Liu, Zhong;Kim, Seong H.
  • 通讯作者:
    Kim, Seong H.
共 1 条
  • 1
前往

Brian Borovsky的其他基金

RUI/Collaborative Research: The Molecular Origins of Friction - A Study Across Velocity Regimes of Phosphonate Monolayers on Alternative MEMS-Type Surfaces
RUI/合作研究:摩擦的分子起源 - 替代 MEMS 型表面上磷酸盐单分子层速度范围的研究
  • 批准号:
    0758330
    0758330
  • 财政年份:
    2009
  • 资助金额:
    $ 5.18万
    $ 5.18万
  • 项目类别:
    Standard Grant
    Standard Grant
MRI/RUI: Acquisition of a Nanoindenter for Molecular-Level Studies of Friction at Grinnell College
MRI/RUI:格林内尔学院购买纳米压痕仪用于分子水平摩擦研究
  • 批准号:
    0215609
    0215609
  • 财政年份:
    2002
  • 资助金额:
    $ 5.18万
    $ 5.18万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

复杂场景下的视频内容增强与理解研究
  • 批准号:
    62372036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
  • 批准号:
    62373334
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
  • 批准号:
    62306239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于场景理解的全景视频智能压缩关键技术研究
  • 批准号:
    62371310
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
    $ 5.18万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
    $ 5.18万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
    $ 5.18万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
    $ 5.18万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
    $ 5.18万
  • 项目类别:
    Continuing Grant
    Continuing Grant