Bioinspired Nanomanufacturing of Graphene-embedded Superhydrophobic Surfaces with Mechanical and Chemical Robustness

具有机械和化学稳定性的石墨烯嵌入超疏水表面的仿生纳米制造

基本信息

  • 批准号:
    1911719
  • 负责人:
  • 金额:
    $ 39.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Super-hydrophobic surfaces with excellent water-repellent properties can find applications in various fields. However, many existing super-hydrophobic surfaces cannot endure mechanical wear nor chemical contamination. In addition, the hydrostatic pressure, evaporation, external force, and surface defects can also result in the loss of super-hydrophobicity. The challenge is to manufacture stable super-hydrophobic surfaces that can resist chemical and mechanical wear. Inspired by the robustness of the super-hydrophobicity associated with the lotus leaf, this award supports fundamental research to generate knowledge for a simple and inexpensive manufacturing process that integrates laser-scribing of multilayer graphene with soft lithography to create robust and durable super-hydrophobic surfaces. The availability of durable super-hydrophobic surfaces would impact several industries such as defense, energy, healthcare, biomedical, aerospace, electronics, and automotive, where water-repellent, antifouling and similar properties are needed, which would benefit the U.S. economy and society. The project focuses on broadening participation from women and underrepresented minority groups and provides them with a bridge toward research-related careers. It provides education and hands-on training in super-hydrophobic surfaces and nanomanufacturing to undergraduate, graduate, and high school students. This project addresses a central concern of super-hydrophobic surfaces, which is the lack of durability. The manufacturing process involves the use of laser-scribing of multilayer graphene to mimic lotus wax in combination with nanostructures by soft lithography to mimic the lotus papillae, thus creating an entirely new class of synthetic super-hydrophobic materials with exceptional stability under various challenging exposure conditions. However, the fundamental relationships between multilayer graphene thickness and mechanical and chemical durability and between the thermodynamic stability and the surface topology are still poorly understood. This project aims to cultivate fundamental knowledge of laser-scribing the multilayer graphene to enhance thermodynamic, chemical, and mechanical stability. The laser-scribing process reduces graphene oxide to graphene, thus capturing key lotus leaf features that would make the surface mechanically robust, while maintaining super-hydrophobicity. Moreover, the researched quantification of the thermodynamic and mechanical durability by measuring the critical Laplace pressure and the critical abrasion cycle at which the super-hydrophobicity is lost enables a systematic and thorough understanding of the underlying relationships among the characteristics of the graphene layer, pattern topology, and enhanced durability. Because multilayer graphene thickness and surface topology are design parameters, once understood, it can lay a solid foundation for the rational design of durable super-hydrophobic surfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有优异拒水性能的超疏水表面可以在各个领域得到应用。然而,许多现有的超疏水表面无法承受机械磨损或化学污染。此外,静水压力、蒸发、外力、表面缺陷等也会导致超疏水性的​​丧失。面临的挑战是制造能够抵抗化学和机械磨损的稳定的超疏水表面。受与荷叶相关的超疏水性的​​鲁棒性的启发,该奖项支持基础研究,以产生简单且廉价的制造工艺的知识,该工艺将多层石墨烯的激光划片与软光刻相结合,以创建坚固耐用的超疏水表面。耐用超疏水表面的出现将影响国防、能源、医疗保健、生物医学、航空航天、电子和汽车等需要防水、防污和类似性能的行业,这将有利于美国经济和社会。该项目的重点是扩大女性和代表性不足的少数群体的参与,并为他们提供通往研究相关职业的桥梁。它为本科生、研究生和高中生提供超疏水表面和纳米制造方面的教育和实践培训。该项目解决了超疏水表面的一个核心问题,即缺乏耐用性。制造过程涉及使用多层石墨烯的激光划线来模拟莲花蜡,并通过软光刻技术与纳米结构相结合来模拟莲花乳头,从而创造出一种全新的合成超疏水材料,在各种具有挑战性的暴露条件下具有卓越的稳定性。然而,多层石墨烯厚度与机械和化学耐久性之间以及热力学稳定性与表面拓扑之间的基本关系仍然知之甚少。该项目旨在培养激光划片多层石墨烯的基础知识,以增强热力学、化学和机械稳定性。激光划片工艺将氧化石墨烯还原为石墨烯,从而捕获荷叶的关键特征,使表面机械坚固,同时保持超疏水性。此外,通过测量临界拉普拉斯压力和失去超疏水性的​​临界磨损循环,对热力学和机械耐久性进行量化研究,使得能够系统、透彻地了解石墨烯层特性、图案拓扑之间的潜在关系。 ,并增强了耐用性。 由于多层石墨烯的厚度和表面拓扑结构是设计参数,一旦理解,就可以为耐用超疏水表面的合理设计奠定坚实的基础。该奖项体现了NSF的法定使命,并通过利用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discrepancy-Based Genetic Algorithm Optimization of Quasi-Random Nanostructures for Broadband Light Reflection Mitigation
用于宽带光反射缓解的准随机纳米结构的基于差异的遗传算法优化
A bioinspired hybrid light-trapping structure and its fabrication for thin-film solar cells
薄膜太阳能电池的仿生混合光捕获结构及其制造
  • DOI:
    10.1109/ipc48725.2021.9593061
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao, Yihong;Zhu, Ming;Zhai, Shengjie;Zhao, Hui
  • 通讯作者:
    Zhao, Hui
Silk fibroin supraparticles created by the evaporation of colloidal Ouzo droplets
  • DOI:
    10.1063/5.0057228
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Lamb, Ashley;He, Fengjie;Zhao, Hui
  • 通讯作者:
    Zhao, Hui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Zhao其他文献

Impact of detector selection on commissioning of Leipzig surface applicators with improving immobilization in high-dose-rate brachytherapy.
探测器选择对莱比锡表面施源器调试的影响,改善高剂量率近距离放射治疗中的固定。
  • DOI:
    10.1016/j.brachy.2022.01.007
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Xing Li;F. Su;V. Sarkar;Hui Zhao;Sergi Ibañez;J. Kunz;G. Nelson;Y. Jessica Huang
  • 通讯作者:
    Y. Jessica Huang
Is Order the Defining Feature of Magnitude Representation? An ERP Study on Learning Numerical Magnitude and Spatial Order of Artificial Symbols
顺序是幅度表示的定义特征吗?
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hui Zhao;Chuansheng Chen;Hongchuan Zhang;Xinlin Zhou;Leilei Mei;Chunhui Chen;Lan Chen;Zhongyu Cao;Q. Dong
  • 通讯作者:
    Q. Dong
LBP-4 a Improves Insulin Resistance via Translocation and 1 Activation of GLUT 4 in OLETF rats 2
LBP-4 a 通过易位和 1 激活 OLETF 大鼠中的 GLUT 4 改善胰岛素抵抗 2
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Zhao;Bing Qiu;Qingwang Li;Tao Zhang;Hui Zhao;Zhibao Chen;Yaping Cai;Hongsheng Ruan;Wen;Xiaoliang Zheng
  • 通讯作者:
    Xiaoliang Zheng
シンポジウムの報告シンポジウムのまとめ
会议报告 会议纪要
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kosuke Tanegashima;Hui Zhao;Martha Rebbert;Igor Dawid;會田勝美
  • 通讯作者:
    會田勝美
Tightening monogamy and polygamy relations of unified entanglement in multipartite systems
多方系统中统一纠缠的一夫一妻制和一夫多妻制关系的收紧
  • DOI:
    10.1007/s11128-022-03479-9
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Mei-Ming Zhang;Naihuan Jing;Hui Zhao
  • 通讯作者:
    Hui Zhao

Hui Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Zhao', 18)}}的其他基金

Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
  • 批准号:
    2314340
  • 财政年份:
    2023
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around dielectric Surfaces
合作研究:聚光极化引起介电表面周围的动电流
  • 批准号:
    2127852
  • 财政年份:
    2021
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Standard Grant
REU Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach
REU 网站:通过硬件-软件协作方法加速深度学习的跨学科研究经验
  • 批准号:
    2051062
  • 财政年份:
    2021
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Standard Grant
CAREER: Reinventing Network-on-Chips of GPU-Accelerated Systems
职业:重塑 GPU 加速系统的片上网络
  • 批准号:
    2046186
  • 财政年份:
    2021
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
  • 批准号:
    2008911
  • 财政年份:
    2020
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Standard Grant
Super-Hydrophobic Surface Enabled Microfluidic Energy Conversion
超疏水表面实现微流体能量转换
  • 批准号:
    1509866
  • 财政年份:
    2015
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Standard Grant
Novel transport phenomena in two-dimensional crystals beyond graphene
石墨烯以外的二维晶体中的新颖输运现象
  • 批准号:
    1505852
  • 财政年份:
    2015
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Continuing Grant
CAREER: Nanoscale Ballistic Spin Transport in Semiconductors
职业:半导体中的纳米级弹道自旋输运
  • 批准号:
    0954486
  • 财政年份:
    2010
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向3D光场显示的衍射型光场调制器研究
  • 批准号:
    61905077
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
悬切结构的仿生制备及液体自发定向输运机制研究
  • 批准号:
    61805156
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于离焦扫描穆勒显微镜的纳米结构缺陷检测理论与方法研究
  • 批准号:
    51775217
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
跨尺度纳米操作机驱动机理及自动化微纳操作方法的研究
  • 批准号:
    61774107
  • 批准年份:
    2017
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
多自由度高速大范围纳米定位控制技术及其在基于探针高频振动的硬材料纳米加工中的应用
  • 批准号:
    61673091
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Corrugated Graphene Superlattice Structures by Strain-induced Shrink Nanomanufacturing
职业:通过应变诱导收缩纳米制造波纹石墨烯超晶格结构
  • 批准号:
    2209157
  • 财政年份:
    2021
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Standard Grant
CAREER: Corrugated Graphene Superlattice Structures by Strain-induced Shrink Nanomanufacturing
职业:通过应变诱导收缩纳米制造波纹石墨烯超晶格结构
  • 批准号:
    1554019
  • 财政年份:
    2016
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanomanufacturing High-performance Graphene-based Electrocatalysts for Efficient Energy Conversion
合作研究:用于高效能量转换的纳米制造高性能石墨烯基电催化剂
  • 批准号:
    1363123
  • 财政年份:
    2014
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanomanufacturing of High-performance Graphene-based Electrocatalysts for Efficient Energy Conversion
合作研究:用于高效能量转换的高性能石墨烯基电催化剂的纳米制造
  • 批准号:
    1400274
  • 财政年份:
    2014
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Standard Grant
Scalable Nanomanufacturing of Graphene Based Composites with Controllable Properties
具有可控性能的石墨烯基复合材料的可扩展纳米制造
  • 批准号:
    1463869
  • 财政年份:
    2014
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了