AF: Small: Looking Under Rocks: A Search for a Provably Stronger TSP Relaxation
AF:小:寻找岩石下:寻找可证明更强的 TSP 弛豫
基本信息
- 批准号:1908517
- 负责人:
- 金额:$ 10.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The traveling salesman problem is one of the most widely known problems of computational difficulty. The goal of the problem is to find the cheapest route for a salesman to visit a number of cities and return to home. It is not known whether there is a means of finding the best possible tour short of enumerating the exponentially large number of possible tours. Widely used algorithms for finding the best possible solution involve computing lower bounds on the length of the tour, and the closer the bound is to cost of the best possible tour, the quicker these algorithms run. This project will investigate alternative lower bounds for the traveling salesman problem to the ones widely used in practice, in the hopes of finding a provably better lower bound. A better understanding of lower bounds for the traveling salesman problem should help with solving other computationally difficult problems. The traveling salesman problem is one that is easy to explain to undergraduates and high school students. The PI and his graduate student plan to use their research as a means of outreach to such students, and to involve undergraduates in their project.Current methods for computing the optimal solution to the traveling salesman problem involve repeatedly solving a well-known linear programming relaxation of the problem. Although this bound is extremely good in practice (that is, it is very close to value of an optimal solution), its worst-case behavior is not well understood, despite decades of research. This project intends to study alternative lower bounds for the traveling salesman problem: it will start by studying semidefinite programming relaxations of the problem, and also consider other constraints that might be added to the linear program in order to be able to prove stronger statements about its worst-case behavior than are currently known. In addition, the project will consider some variants of the traveling salesman problem that have not been as well-studied, including the circulant TSP; for this variant, we are not even sure if the problem is NP-hard or has a polynomial-time algorithm.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
旅行推销员问题是计算困难中最广为人知的问题之一。问题的目的是找到推销员参观许多城市并回到家的最便宜的路线。尚不清楚是否有一种方法可以找到最佳的巡回演出,而没有列举大量可能的旅行。用于找到最佳解决方案的广泛使用算法涉及在游览长度上计算下限,而界限越接近最佳旅行,这些算法就越快。该项目将调查旅行推销员问题的替代下限,以期在实践中广泛使用的问题,以期找到一个更好的下限。更好地了解旅行推销员问题的下限应有助于解决其他计算困难问题。旅行推销员问题很容易向大学生和高中生解释。 PI和他的研究生计划将他们的研究用作与此类学生的宣传手段,并让本科生参与其项目。计算对旅行推销员问题的最佳解决方案的流动方法涉及反复解决问题的著名线性编程放松问题。尽管这种界限在实践中非常好(也就是说,它非常接近最佳解决方案的价值),但尽管进行了数十年的研究,但其最糟糕的行为却尚未得到很好的理解。该项目打算研究旅行推销员问题的替代性下限:首先,它将研究该问题的半决赛编程放宽,并考虑可能添加到线性计划中的其他约束因素,以便能够证明有关其最糟糕的行为的更强有力的陈述。 此外,该项目将考虑旅行推销员问题的一些变体,这些变体还没有得到充分研究,包括循环型TSP;对于这种变体,我们甚至不确定问题是NP-HARD还是具有多项式时间算法。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subtour Elimination Constraints Imply a Matrix-Tree Theorem SDP Constraint for the TSP
- DOI:10.1016/j.orl.2020.02.011
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Samuel C. Gutekunst;David P. Williamson
- 通讯作者:Samuel C. Gutekunst;David P. Williamson
Characterizing the Integrality Gap of the Subtour LP for the Circulant Traveling Salesman Problem
描述循环旅行商问题的 Subtour LP 的完整性差距
- DOI:10.1137/19m1245840
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Gutekunst, Samuel C.;Williamson, David P.
- 通讯作者:Williamson, David P.
Semidefinite Programming Relaxations of the Traveling Salesman Problem and Their Integrality Gaps
旅行商问题的半定规划松弛及其完整性差距
- DOI:10.1287/moor.2020.1100
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Gutekunst, Samuel C.;Williamson, David P.
- 通讯作者:Williamson, David P.
The Unbounded Integrality Gap of a Semidefinite Relaxation of the Traveling Salesman Problem
旅行商问题半定松弛的无界积分间隙
- DOI:10.1137/17m1154722
- 发表时间:2018
- 期刊:
- 影响因子:3.1
- 作者:Gutekunst, Samuel C.;Williamson, David P.
- 通讯作者:Williamson, David P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Williamson其他文献
The PROMISING Project: A Pilot Study to Improve Geriatric Care Through a Pharmacist-Led Psychotropic Stewardship Program
有前途的项目:通过药剂师主导的精神药物管理计划改善老年护理的试点研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
Marie d'Amours;Farah Ettis;Lauriane Ginefri;Johnny Lim;Angela;Jennifer Fontaine;Dana Wazzan;David Williamson;Vincent Dagenais - 通讯作者:
Vincent Dagenais
A Correlational Study Assessing the Relationships among Information Technology Project Complexity, Project Complication, and Project Success.
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
David Williamson - 通讯作者:
David Williamson
Factor V Cambridge: a new mutation (Arg306-->Thr) associated with resistance to activated protein C.
剑桥因子 V:与活化蛋白 C 抗性相关的新突变 (Arg306-->Thr)。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:20.3
- 作者:
David Williamson;K. Brown;R. Luddington;C. Baglin;Trevor Baglin - 通讯作者:
Trevor Baglin
Proton-Pump Inhibitors to Prevent Gastrointestinal Bleeding - An Updated Meta-Analysis.
质子泵抑制剂预防胃肠道出血 - 更新的荟萃分析。
- DOI:
10.1056/evidoa2400134 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ying Wang;S. Parpia;Long Ge;D. Heels;H. Lai;Meisam Abdar Esfahani;Bei Pan;W. Alhazzani;Stefan Schandelmaier;Francois Lauzier;Y. Arabi;Jeffrey F Barletta;Adam M Deane;S. Finfer;David Williamson;S. Kanji;M. H. Møller;Anders Perner;M. Krag;P. Young;Joanna C Dionne;Naomi Hammond;Zhikang Ye;Quazi Ibrahim;Deborah Cook - 通讯作者:
Deborah Cook
Sub-Resolution Lipid Domains in the Plasma Membrane Influence Diffusion and Clustering
- DOI:
10.1016/j.bpj.2011.11.1640 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Dylan M. Owen;Astrid Magenau;David Williamson;Katharina Gaus - 通讯作者:
Katharina Gaus
David Williamson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Williamson', 18)}}的其他基金
AF: SMALL: Topics in Bridging Continuous and Discrete Optimization
AF:SMALL:桥接连续优化和离散优化的主题
- 批准号:
2007009 - 财政年份:2020
- 资助金额:
$ 10.56万 - 项目类别:
Standard Grant
AF: EAGER: Approximation algorithms for the traveling salesman problem
AF:EAGER:旅行商问题的近似算法
- 批准号:
1552831 - 财政年份:2015
- 资助金额:
$ 10.56万 - 项目类别:
Standard Grant
AF: Small: The Traveling Salesman Problem and Lightweight Approximation Algorithms
AF:小:旅行商问题和轻量级近似算法
- 批准号:
1115256 - 财政年份:2011
- 资助金额:
$ 10.56万 - 项目类别:
Standard Grant
Contemporary Issues in Network Design
网络设计的当代问题
- 批准号:
0830519 - 财政年份:2008
- 资助金额:
$ 10.56万 - 项目类别:
Standard Grant
Resolving Anomalies in Approximation Algorithms
解决近似算法中的异常
- 批准号:
0514628 - 财政年份:2005
- 资助金额:
$ 10.56万 - 项目类别:
Continuing Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9305954 - 财政年份:1993
- 资助金额:
$ 10.56万 - 项目类别:
Fellowship Award
Interdisciplinary Research on a Watershed- Estuarine System Of the Chesapeake Bay
切萨皮克湾流域-河口系统的跨学科研究
- 批准号:
7203361 - 财政年份:1971
- 资助金额:
$ 10.56万 - 项目类别:
Interagency Agreement
相似国自然基金
SERT-nNOS蛋白相互作用的结构基础及其小分子互作抑制剂的设计、合成及快速抗抑郁活性研究
- 批准号:82373728
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
APOE调控小胶质细胞脂代谢模式在ASD认知和社交损伤中的作用及机制研究
- 批准号:82373597
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小胶质细胞外泌体通过miR-486抑制神经元铁死亡介导电针修复脊髓损伤的机制研究
- 批准号:82360454
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
CUL4B正反馈调控FOXO3a-FOXM1通路促进非小细胞肺癌放疗抵抗的机制研究
- 批准号:82360584
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
葡萄糖饥饿条件下AMPK-CREB-PPA1信号通路促进非小细胞肺癌细胞增殖的分子机制研究
- 批准号:82360518
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
中小規模病院における効率的かつ質の高い看護に向けた人材育成に関する理論の開発
中小医院高效优质护理人力资源开发理论发展
- 批准号:
23K09863 - 财政年份:2023
- 资助金额:
$ 10.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
小児看護学実習に臨む看護学生の臨床能力を評価する、小児看護学実習前OSCEの開発
制定儿科护理培训前OSCE评估护生进入儿科护理培训的临床能力
- 批准号:
23K16464 - 财政年份:2023
- 资助金额:
$ 10.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ターミナル期にある小児がんの子どもを対象とする看護師の道徳的レジリエンス
癌症末期儿童护理护士的道德韧性
- 批准号:
22K10958 - 财政年份:2022
- 资助金额:
$ 10.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Women's Place and Occupations in Crime Fiction
女性在犯罪小说中的地位和职业
- 批准号:
22K00379 - 财政年份:2022
- 资助金额:
$ 10.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AYA世代の小児期発症慢性疾患患者の包括的看護支援ガイドラインの開発
制定针对儿童期慢性病 AYA 患者的综合护理支持指南
- 批准号:
22K11070 - 财政年份:2022
- 资助金额:
$ 10.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)