Hyperbolic Manifolds and Their Groups
双曲流形及其群
基本信息
- 批准号:1907708
- 负责人:
- 金额:$ 24.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A three-manifold is a space where an object can move around in three distinct perpendicular directions. The universe that we inhabit is a three-manifold whose global structure we do not yet understand. Thanks to powerful theorems by Thurston, Perelman, and Mostow, we do know that the geometry of a manifold (measurements of angles, distances, and curvature) is closely tied to its large-scale structure. What is missing at this point is a quantitative understanding of how geometry and large-scale topology determine one another. This project seeks quantitative information of this nature. It contains suitable sub-projects for graduate students. More specifically, this project seeks to make progress on several fundamental questions involving the geometry of negatively curved three-manifolds and their fundamental groups. One question involves quantitative control on the change in geometry under Dehn surgery, including applications to the cosmetic surgery conjecture. A second question involves understanding Kleinian groups in which two independent elements move a point by a small distance, with applications to bounding the Margulis constant. A third question involves a quantitative understanding of the way in which three-manifold groups act on CAT(0) cube complexes, with an eye toward developing tools for the Cannon conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
三流形是一个物体可以在三个不同的垂直方向移动的空间。我们居住的宇宙是一个三流形,我们还不了解其整体结构。得益于瑟斯顿、佩雷尔曼和莫斯托强大的定理,我们确实知道流形的几何形状(角度、距离和曲率的测量)与其大规模结构密切相关。目前缺少的是对几何和大规模拓扑如何相互决定的定量理解。该项目寻求这种性质的定量信息。它包含适合研究生的子项目。更具体地说,该项目旨在在涉及负弯曲三流形及其基本群的几何形状的几个基本问题上取得进展。其中一个问题涉及对德恩手术下几何形状变化的定量控制,包括在整容手术猜想中的应用。第二个问题涉及理解克莱因群,其中两个独立元素将一个点移动一小段距离,并应用于限制马古利斯常数。第三个问题涉及对三流形群作用于 CAT(0) 立方体复合体的方式的定量理解,着眼于为 Cannon 猜想开发工具。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effective drilling and filling of tame hyperbolic 3-manifolds
温和双曲 3 流形的有效钻孔和充填
- DOI:10.4171/cmh/536
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Futer, David;Purcell, Jessica;Schleimer, Saul
- 通讯作者:Schleimer, Saul
Infinitely many virtual geometric triangulations
无限多个虚拟几何三角剖分
- DOI:10.1112/topo.12271
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Futer, David;Hamilton, Emily;Hoffman, Neil R.
- 通讯作者:Hoffman, Neil R.
Random veering triangulations are not geometric
随机转向三角测量不是几何的
- DOI:10.4171/ggd/575
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Futer, David;Taylor, Samuel;Worden, William
- 通讯作者:Worden, William
Effective bilipschitz bounds on drilling and filling
钻井和充填的有效 bilipschitz 界限
- DOI:10.2140/gt.2022.26.1077
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Futer, David;Purcell, Jessica S;Schleimer, Saul
- 通讯作者:Schleimer, Saul
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Futer其他文献
Finite surgeries on three-tangle pretzel knots
三缠椒盐结的有限手术
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
David Futer;石川昌治;蒲谷祐一;Thomas Mattman;下川航也 - 通讯作者:
下川航也
David Futer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Futer', 18)}}的其他基金
Conference on Classical and Quantum 3-Manifold Topology
经典与量子三流形拓扑会议
- 批准号:
1841116 - 财政年份:2018
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Graduate Student Conference in Algebra, Geometry, and Topology
代数、几何和拓扑研究生会议
- 批准号:
1732161 - 财政年份:2017
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Graduate Student Conference in Algebra, Geometry, and Topology
代数、几何和拓扑研究生会议
- 批准号:
1623003 - 财政年份:2016
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Connections in low-dimensional topology
低维拓扑中的连接
- 批准号:
1408682 - 财政年份:2014
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Conference Proposal: Geometric Topology in Cortona
会议提案:科尔托纳的几何拓扑
- 批准号:
1313541 - 财政年份:2013
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Collaborative research: Hyperbolic geometry of knots and 3-manifolds
合作研究:结和三流形的双曲几何
- 批准号:
1007221 - 财政年份:2010
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
相似海外基金
Hyperbolic Manifolds and Their Embedded Submanifolds
双曲流形及其嵌入子流形
- 批准号:
2243188 - 财政年份:2022
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Hyperbolic Manifolds and Their Embedded Submanifolds
双曲流形及其嵌入子流形
- 批准号:
2203885 - 财政年份:2022
- 资助金额:
$ 24.34万 - 项目类别:
Standard Grant
Hyperbolic Manifolds and Their Moduli Spaces
双曲流形及其模空间
- 批准号:
1904130 - 财政年份:2019
- 资助金额:
$ 24.34万 - 项目类别:
Continuing Grant
Research on SL_2 character varieties of hyperbolic 3-manifolds and their zeta functions
双曲3流形SL_2特征簇及其zeta函数研究
- 批准号:
19K03410 - 财政年份:2019
- 资助金额:
$ 24.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hyperbolic structures on manifolds and their deformations
流形上的双曲结构及其变形
- 批准号:
15540069 - 财政年份:2003
- 资助金额:
$ 24.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)