RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
基本信息
- 批准号:1906323
- 负责人:
- 金额:$ 22.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is split into two different areas of research concerning a field of mathematics called topology, which studies the properties of objects that remain the same even when they are twisted or deformed continuously. One direction relates to quantum physics, and the other to molecular biology. In 2016, physicists won the Nobel Prize for applying topology to research in condensed matter physics, and the underlying mathematical framework is called a topological quantum field theory (TQFT). The first part of the project focuses on topological constructions from TQFTs and conjectures about them. The PI aims to further advance the basic understanding of the connections between the mathematical and the theoretical physical sides of the subject. This work may be relevant to practical applications, such as the theoretical foundations and development of a topological quantum computer. The second part of the project is about the topology of proteins, which are long and flexible enough to exhibit knotting or linking. It is believed that such topological characteristics affect a protein's functionality, which is governed by its three-dimensional placement. However, little is known about how the proteins fold into a knotted state, and this project analyzes theories of protein folding from a topological viewpoint. In particular, knotted proteins are implicated in neurodegenerative disorders like Parkinson's and are found in bacteria used for bioremediation; a better understanding of the molecular knotting mechanism may lead to novel ways to target topological characteristics which affect specific biological functions. The award also supports undergraduate students participating in this research. Specifically, the research in quantum topology centers around the Kauffman bracket skein algebra of a surface, especially its representations. The skein algebra is related to quantum constructions, such as the Jones polynomial and the Witten-Reshetikhin-Turaev topological quantum field theory, as well as hyperbolic geometric constructions, particularly the SL(2,C)-character variety. The research will explore this relationship, and to exploit it for better understanding other invariants in geometric topology. With similar aims, the project also investigates recent generalizations of the skein algebra that includes arcs. In the second line of research, techniques from topology will be used to analyze evidence from laboratory and computer simulation experiments about knotted proteins, in order to develop new theories for how proteins might fold into a knotted configuration. The theoretical folding pathways can then be compared against widely available structural data in order to identify the most likely folding pathways for specific families of proteins. Thus, while providing valuable insights into folding pathways for all knotted proteins, this research aims to simplify the analysis for molecular biologists studying specific knotted proteins as well.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目被分为两个不同的研究领域,该领域涉及一个称为拓扑的数学领域,该领域研究了即使连续扭曲或变形的物体的性质,这些拓扑的特性也保持不变。 一个方向与量子物理学有关,另一个方向与分子生物学有关。 2016年,物理学家因将拓扑拓扑为凝结物理学的研究而获得诺贝尔奖,而基础数学框架被称为拓扑量子田地理论(TQFT)。 该项目的第一部分着重于TQFTS的拓扑结构和有关它们的猜想。 PI旨在进一步提高对学科的数学和理论物理方面之间联系的基本理解。 这项工作可能与实际应用有关,例如拓扑量子计算机的理论基础和开发。 该项目的第二部分是关于蛋白质的拓扑结构,该蛋白质长期且灵活,可以表现出结节或链接。 人们认为,这种拓扑特征会影响蛋白质的功能,该功能受其三维放置的控制。 但是,关于蛋白质如何折叠成打结状态的知之甚少,并且该项目从拓扑观点分析了蛋白质折叠的理论。 特别是,打结的蛋白与帕金森氏症这样的神经退行性疾病涉及,并在用于生物修复的细菌中发现。更好地了解分子打结机制可能会导致靶向拓扑特征的新方法,这些特征影响特定的生物学功能。 该奖项还支持参加这项研究的本科生。具体而言,量子拓扑的研究集中在表面的Kauffman支架绞线代数周围,尤其是其表示。 基因代数与量子构建体有关,例如琼斯多项式和witten-Reshetikhin-turaev拓扑量量子场理论,以及双曲线几何构建体,尤其是SL(2,C) - 特征。 该研究将探索这种关系,并利用它,以更好地理解几何拓扑中的其他不变性。 以类似的目的,该项目还调查了包括弧在内的绞线代数的最新概括。 在第二类研究中,拓扑技术将用于分析有关打结蛋白的实验室和计算机仿真实验的证据,以开发新的理论,以使蛋白质如何折叠成打结的构型。 然后,可以将理论折叠途径与广泛可用的结构数据进行比较,以确定特定蛋白质家族最可能的折叠途径。 因此,在为所有打结蛋白的折叠途径提供宝贵的见解时,该研究旨在简化研究特定打结蛋白的分子生物学家的分析。该奖项反映了NSF的法定任务,并认为通过使用该基金会的知识分子和更广泛的影响来评估CRITERIA CRITERIA CRITERIA。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Representations of the Kauffman bracket skein algebra III: closed surfaces and naturality
考夫曼括号绞线代数 III 的表示:闭曲面和自然性
- DOI:10.4171/qt/125
- 发表时间:2019
- 期刊:
- 影响因子:1.1
- 作者:Bonahon, Francis;Wong, Helen
- 通讯作者:Wong, Helen
The Roger–Yang skein algebra and the decorated Teichmüller space
Roger-Yang 绞线代数和装饰 Teichmüller 空间
- DOI:10.4171/qt/150
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Moon, Han-Bom;Wong, Helen
- 通讯作者:Wong, Helen
The search for leakage-free entangling Fibonacci braiding gates
- DOI:10.1088/1751-8121/ab488e
- 发表时间:2019-11-08
- 期刊:
- 影响因子:2.1
- 作者:Cui, Shawn X.;Tian, Kevin T.;Wong, Helen M.
- 通讯作者:Wong, Helen M.
Topological descriptions of protein folding
- DOI:10.1073/pnas.1808312116
- 发表时间:2019-05-07
- 期刊:
- 影响因子:11.1
- 作者:Flapan, Erica;He, Adam;Wong, Helen
- 通讯作者:Wong, Helen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen Wong其他文献
Sa342 FAST SCORE REAL LIFE EXPERIENCE: IMPLICATIONS FOR CLINICAL PRACTICE
- DOI:
10.1016/s0016-5085(21)02701-3 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Kartheek Dasari;Minh Trannguyen;Thimmaiah Theethira;Helen Wong;Marina Roytman - 通讯作者:
Marina Roytman
The Delivery of Palliative and End-of-Life Care to Adolescents and Young Adults Living with Cancer: A Scoping Review.
向患有癌症的青少年和年轻人提供姑息治疗和临终关怀:范围界定审查。
- DOI:
10.1089/jayao.2023.0013 - 发表时间:
2023 - 期刊:
- 影响因子:2
- 作者:
E. Drake;Lori E Weeks;Michael van Manen;H. Shin;Helen Wong;Dani Taylor;Shelley McKibbon;Janet Curran - 通讯作者:
Janet Curran
Salvage surgery for local regrowth following external beam radiotherapy followed by contact X-ray brachytherapy and 'watch & wait' for rectal cancer. Do we compromise the chance of cure?
- DOI:
10.1016/j.ejso.2018.01.543 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:
- 作者:
Arthur Sun Myint;Fraser Smith;Helen Wong;Karen Whitmarsh;Raj Sripadam;Chris Rao;Kate Perkins;Mark Pritchard - 通讯作者:
Mark Pritchard
High Performance Silicon Nitride Passive Optical Components on Monolithic Silicon Photonics Platform
单片硅光子平台上的高性能氮化硅无源光学元件
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
S. Chandran;Yusheng Bian;Won Suk Lee;Ahmed Abumazwed;Neng Liu;Luhua Xu;Hanyi Ding;A. Aboketaf;Michal Rakowski;K. Dezfulian;Arman Najafi;T. Hirokawa;Qidi Liu;A. Stricker;S. Krishnamurthy;K. McLean;R. Sporer;Michelle Zhang;Shenghua Song;Helen Wong;Salman Mosleh;D. Deptuck;Janet Tinkler;Jae Gon Lee;Vikas Gupta;A. Yu;K. Giewont;T. Letavic - 通讯作者:
T. Letavic
Salvage surgery for local regrowth following external beam radiotherapy followed by contact X-ray brachytherapy and ‘Watch & wait’ for rectal cancer. Do we compromise the chance of cure?
- DOI:
10.1016/j.ejso.2017.10.145 - 发表时间:
2017-11-01 - 期刊:
- 影响因子:
- 作者:
Arthur Sun Myint;Fraser Smith;Helen Wong;Karen Whitmarsh;Raj Sripadam;Chris Rao;Kate Perkins;Mark Pritchard - 通讯作者:
Mark Pritchard
Helen Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helen Wong', 18)}}的其他基金
RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
- 批准号:
2305414 - 财政年份:2023
- 资助金额:
$ 22.93万 - 项目类别:
Standard Grant
RUI: Relating quantum and classical topology and geometry
RUI:关联量子和经典拓扑和几何
- 批准号:
1105692 - 财政年份:2011
- 资助金额:
$ 22.93万 - 项目类别:
Standard Grant
相似国自然基金
乙酰缬草三酯通过靶向PCBP1/2和GPX4双重作用诱导结直肠癌细胞铁死亡的分子机制研究
- 批准号:82374086
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于三维显微取样测序技术探究结直肠癌肝转移的时空演化模型
- 批准号:32300492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三江源区苔藓结皮对草地早熟禾的促进作用及其机制
- 批准号:32360283
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
靶向、组装和缓释三位一体的“智能”多肽前药在结直肠癌治疗增效中的应用研究
- 批准号:22305208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维石墨烯热电子增强的S-型异质结全波段光催化剂及其分解水制氢性能研究
- 批准号:52372050
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Asymptotic behaviors of quantum invariants of knots and three-manifolds
结和三流形的量子不变量的渐近行为
- 批准号:
20K03601 - 财政年份:2020
- 资助金额:
$ 22.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behaviors of quantum invariants of knots and three-manifolds
结和三流形的量子不变量的渐近行为
- 批准号:
17K05239 - 财政年份:2017
- 资助金额:
$ 22.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Heegaard Floer homology, knots, and three-manifolds
Heegaard Floer 同调、结和三流形
- 批准号:
1309152 - 财政年份:2013
- 资助金额:
$ 22.93万 - 项目类别:
Continuing Grant
Knots and Surfaces in Three-Manifolds
三流形中的结和曲面
- 批准号:
1237324 - 财政年份:2011
- 资助金额:
$ 22.93万 - 项目类别:
Continuing Grant
Knots and Surfaces in Three-Manifolds
三流形中的结和曲面
- 批准号:
1105312 - 财政年份:2011
- 资助金额:
$ 22.93万 - 项目类别:
Continuing Grant