Quantum Straintronics with Single Photon Emitters in van der Waals Materials

范德华材料中的单光子发射器的量子应变电子学

基本信息

  • 批准号:
    1905809
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Non-technical AbstractThis research team will investigate strong coupling between a single packet (quantum) of light called photon and an atomically thin mechanical oscillator which can move in many directions. Single photons which are emitted from these two-dimensional materials can be used to communicate private data in a more secure fashion than the state-of-the-art. Moreover, controllable stretching of these two-dimensional materials is expected to tune the properties of the emitted single photons. Unusual effects such as a single photon changing the frequency of the oscillator are expected and represent an unexplored regime of sensitivity. The understanding gained from such a study can be applied for future technologies based on quantum science such as quantum sensors which can outperform their classical counterparts. Integrated with the research, a research-oriented training course in Materials and Engineering Physics at Emory Physics is preparing undergraduate students as a part of the future generation of “quantum engineers and scientists” needed for the next quantum revolution. An annual summer program in partnership with historically black colleges and universities will be implemented to offer summer opportunities in the area of materials research to students from underrepresented communities with an eventual goal of preparing them for academic careers. In addition, public lectures on scientific topics will be conducted to engage the local community and inspire younger generation to choose careers in STEM. Technical AbstractThe behavior of a quantum system coupled to collective excitations of a solid such as vibrations is widely studied problem exploring the boundary between classical and quantum world. The recent discovery of atomically thin materials offers an ideal system to further our fundamental understanding of behavior of quantum hybrid systems. Owing to their extremely low mass, atomically thin mesoscopic oscillators have large quantum fluctuations in spite of their many degrees of freedom. This allows for very strong coupling to other quantum degrees of freedom such as single photons arising from quantum emitters present in such two-dimensional materials. The goal is to use dynamic, tunable mechanical strain as a means of creating and controlling quantum emitters in atomically thin materials, enabling unprecedented strong, quantum opto-acoustic coupling between them and creating a playground for simulating and sensing quantum behavior. In addition to exploring the behavior of quantum emitters and their coupling to mechanical strain, the goal is to also understand the role played by some of the defining features of atomically thin materials such as valley pseudospin, Berry curvature – an effective magnetic field in the reciprocal space, and strong Coulomb interactions. The understanding gained from this research should allow for possible on-chip scalability of quantum arrays featuring dynamic control besides furtherance of fundamental understanding of unexplored regimes of strong quantum opto-mechanical coupling in a system with strong Coulomb interactions. These features, which are absent in most other quantum emitters, add richness to scope of this project and offer potential novel functionalities for quantum science and technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术抽象研究团队将研究一个称为光子的光(量子)和原子上薄机械振荡器之间的强耦合,该振荡器可以在许多方向上移动。从这些二维材料中发出的单张照片可用于以比最先进的方式以更安全的方式传达私人数据。此外,这些二维材料的受控拉伸有望调节发射的单照片的性质。期望诸如单个光子更改振荡器频率之类的异常效应是可以预期的,代表着意外的灵敏度。从此类研究中获得的理解可以用于基于量子科学的未来技术,例如量子传感器,这些传感器可以胜过其经典同行。与这项研究集成,埃默里物理学的材料和工程物理学的研究培训课程正在为本科生做好准备,这是下一代量子革命所需的未来一代“量子工程师和科学家”的一部分。与历史悠久的黑人学院和大学合作,将实施一项年度夏季计划,以在材料研究领域为来自代表性不足的社区的学生提供夏季机会,其目标是为学术职业做好准备。此外,将进行有关科学主题的公开讲座,以吸引当地社区并激发年轻一代在STEM中选择职业。技术摘要量子系统与固体(例如振动)的集体兴奋相结合的行为是广泛研究的问题,探讨了古典世界和量子世界之间的边界。最近发现的原子薄材料提供了一个理想的系统,可以进一步了解我们对量子混合系统行为的基本理解。由于它们的质量极低,原子较薄的介质振荡器尽管有许多自由度,但它们具有很大的量子波动。这允许与其他量子自由度相连,例如由这种二维材料中存在的量子发射器引起的单照片。目的是使用动态,可调的机械应变作为在原子薄材料中创建和控制量子发射器的一种手段,从而使它们之间实现了前所未有的强,量子光声耦合,并创建一个用于模拟和传感量子行为的操场。除了探索量子发射器的行为及其与机械应变的耦合外,目标还包括理解原子薄材料的某些定义特征(例如谷化伪源性,浆果曲率,互惠空间中的有效磁场)的作用,以及较强的库仑相互作用。从这项研究中获得的理解力应允许在具有强大库仑相互作用的系统中对强量量子光学机械耦合的意外理解的基本了解,还可以使量子阵列的芯片可扩展性具有动态控制。这些功能在大多数其他量子发射器中都没有,它为该项目的范围增添了丰富性,并为量子科学和技术提供了潜在的新功能。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响来通过评估来获得的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dipolar interactions between localized interlayer excitons in van der Waals heterostructures
  • DOI:
    10.1038/s41563-020-0661-4
  • 发表时间:
    2020-04-13
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Li Weijie;Lu Xin;Srivastava, Ajit
  • 通讯作者:
    Srivastava, Ajit
Optical control of the valley Zeeman effect through many-exciton interactions
  • DOI:
    10.1038/s41565-020-00804-0
  • 发表时间:
    2020-11-30
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Li, Weijie;Lu, Xin;Srivastava, Ajit
  • 通讯作者:
    Srivastava, Ajit
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ajit Srivastava其他文献

“More” or “Enough”? Rural-Urban Differences in Maximizing: The Case of India
城乡差异最大化:“更多”还是“足够”?
Best Practices for Improving the Reliability of Power Electronic Assets in a large Oil and Gas Facility
提高大型石油和天然气设施电力电子资产可靠性的最佳实践
Chiral phonons in the indirect optical transition of a MoS2/WS2 heterostructure
MoS2/WS2 异质结构间接光学跃迁中的手性声子
  • DOI:
    10.1103/physrevb.102.174301
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Wei Zhang;Ajit Srivastava;Xiao Li;Lifa Zhang
  • 通讯作者:
    Lifa Zhang
Impact of COVID-19 lockdown on aerosol optical and radiative properties over Indo-Gangetic Plain
  • DOI:
    10.1016/j.uclim.2021.100839
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Atul Kumar Sarla;Ajit Srivastava;Sumit Kumar Ahlawat; Mishra
  • 通讯作者:
    Mishra

Ajit Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ajit Srivastava', 18)}}的其他基金

EFRI NewLAW: Non-reciprocal, topologically protected propagation using atomically thin materials for nanoscale devices
EFRI NewLAW:使用原子级薄材料用于纳米级设备的非互易、拓扑保护传播
  • 批准号:
    1741691
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

MnTe多形変態のひずみ制御およびそのストレイントロニクスデバイスへの展開
MnTe多晶型转变的应变控制及其在应变电子器件中的应用
  • 批准号:
    22KJ0189
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Straintronics of imperfect quasi-two-dimensional materials: coplanar vs lamellar heterostructures
不完美准二维材料的应变电子学:共面与层状异质结构
  • 批准号:
    405594721
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grants
SHF: Small: Pipelined and wireless ultra-low power straintronics: An acoustically clocked combinational and sequential nanomagnetic architecture
SHF:小型:管道式和无线超低功耗应变电子学:声学时钟组合和顺序纳米磁性架构
  • 批准号:
    1216614
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NEB: Hybrid Spintronics and Straintronics: A New Technology for Ultra-Low Energy Computing and Signal Processing Beyond the Year 2020.
NEB:混合自旋电子学和应变电子学:2020 年以后超低能耗计算和信号处理的新技术。
  • 批准号:
    1124714
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Straintronics with van der Waals Ferroelectrics
应变电子学与范德华铁电体
  • 批准号:
    535379969
  • 财政年份:
  • 资助金额:
    $ 40万
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了