Collaborative Research: Towards a Predictive Theory of Microstructure Evolution in Polycrystalline Materials

合作研究:多晶材料微观结构演化的预测理论

基本信息

  • 批准号:
    1905463
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Most technologically useful materials - spanning the length scale from meters to nanometers, from aircraft to microprocessors - are polycrystalline. Crystals are materials with ordered arrangements of atoms. Polycrystalline microstructures are composed of a myriad of small monocrystalline cells/grains separated by grain boundaries/interfaces. Grain boundaries play a crucial role in determining the properties of materials across a wide range of scales. These properties include mechanical strength and ductility, electrical resistivity, magnetic hardness, etc.; they strongly impact the performance of materials in engineered systems. A grand challenge problem in the engineering of polycrystals is to develop prescriptive manufacturing process technologies capable of producing an arrangement of grains that yields a desired set of materials properties. One method by which the grain structure is engineered is grain growth or coarsening of a starting structure. This project is aimed at developing a predictive theory of grain growth through close integration of experiments, simulations, and mathematical models. The project will involve interdisciplinary research and will enhance the infrastructure of engineered materials and systems through the development of new, predictive and prescriptive experimental, analytical and computational tools that will help in the design of material microstructures with predictable properties. The new knowledge and tools that will emerge from the proposed program will have an impact on the performance and reliability of polycrystalline materials used in engineered systems. This project will also directly impact workforce development through training and education of graduate and undergraduate students in the proposed research. In addition, the investigators will engage in outreach activities that include training of underrepresented groups in STEM.Grain growth can be viewed as the evolution of a large metastable network, and can be mathematically modeled by a set of deterministic local evolution laws for the growth of an individual grain combined with stochastic models to describe the interaction between them. Hence, to develop a predictive theory, a broad range of statistical measures for microstructure evolution during grain growth will be investigated using experiments, simulation, and mathematical modeling. The main goal of this effort will be to identify/derive possible stochastic processes that drive the evolution of various statistical measures, understand possible links between them, and establish connections to materials properties. As a part of the project, tools from mathematical analysis, partial differential equations, statistics, scientific computing, numerical analysis and high-performance computing will be closely integrated with experimental data and experiments. The convergence of experiments, numerical simulation and mathematical modeling through an integrated synergistic approach is the hallmark of the proposed program, and it is essential in order to improve upon existing models of grain growth and guide the design of new experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大多数技术上有用的材料——长度范围从米到纳米,从飞机到微处理器——都是多晶材料。晶体是原子有序排列的材料。多晶微观结构由无数由晶界/界面分隔的小单晶细胞/晶粒组成。晶界在确定各种尺度的材料性能方面发挥着至关重要的作用。这些性能包括机械强度和延展性、电阻率、磁硬度等;它们强烈影响工程系统中材料的性能。多晶工程中的一个重大挑战是开发规范的制造工艺技术,能够生产出能够产生所需材料性能的晶粒排列。设计晶粒结构的一种方法是初始结构的晶粒生长或粗化。该项目旨在通过实验、模拟和数学模型的紧密结合来开发晶粒生长的预测理论。该项目将涉及跨学科研究,并将通过开发新的、预测性和规范性实验、分析和计算工具来增强工程材料和系统的基础设施,这些工具将有助于设计具有可预测特性的材料微观结构。拟议计划中出现的新知识和工具将对工程系统中使用的多晶材料的性能和可靠性产生影响。该项目还将通过对拟议研究中的研究生和本科生进行培训和教育,直接影响劳动力发展。此外,研究人员还将开展外展活动,包括对 STEM 中代表性不足的群体进行培训。晶粒生长可以被视为大型亚稳态网络的演化,并且可以通过一组确定性局部演化定律对晶粒生长进行数学建模。单个颗粒与随机模型相结合来描述它们之间的相互作用。因此,为了发展预测理论,将使用实验、模拟和数学模型来研究晶粒生长过程中微观结构演变的广泛统计测量。这项工作的主要目标是识别/推导可能的随机过程,推动各种统计测量的演变,了解它们之间可能的联系,并建立与材料特性的联系。作为该项目的一部分,数学分析、偏微分方程、统计学、科学计算、数值分析和高性能计算等工具将与实验数据和实验紧密结合。通过综合协同方法将实验、数值模拟和数学建模融为一体是该计划的特点,这对于改进现有的晶粒生长模型并指导新实验的设计至关重要。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Motion of Grain Boundaries with Dynamic Lattice Misorientations and with Triple Junctions Drag
具有动态晶格取向差和三重结阻力的晶界运动
  • DOI:
    10.1137/19m1265855
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Epshteyn, Yekaterina;Liu, Chun;Mizuno, Masashi
  • 通讯作者:
    Mizuno, Masashi
Grain Growth and the Effect of Different Time Scales
晶粒生长和不同时间尺度的影响
Relative grain boundary energies from triple junction geometry: Limitations to assuming the Herring condition in nanocrystalline thin films
三结几何形状的相对晶界能量:假设纳米晶薄膜中赫林条件的局限性
  • DOI:
    10.1016/j.actamat.2022.118476
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Patrick, Matthew J.;Rohrer, Gregory S.;Chirayutthanasak, Ooraphan;Ratanaphan, Sutatch;Homer, Eric R.;Hart, Gus L. W.;Epshteyn, Yekaterina;Barmak, Katayun
  • 通讯作者:
    Barmak, Katayun
Local well-posedness of a nonlinear Fokker–Planck model
非线性福克普朗克模型的局部适定性
  • DOI:
    10.1088/1361-6544/acb7c2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Epshteyn, Yekaterina;Liu, Chang;Liu, Chun;Mizuno, Masashi
  • 通讯作者:
    Mizuno, Masashi
Large time asymptotic behavior of grain boundaries motion with dynamic lattice misorientations and with triple junctions drag
具有动态晶格取向差和三结阻力的晶界运动的大时间渐近行为
  • DOI:
    10.4310/cms.2021.v19.n5.a10
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Epshteyn, Yekaterina;Liu, Chun;Mizuno, Masashi
  • 通讯作者:
    Mizuno, Masashi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yekaterina Epshteyn其他文献

Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system
平衡良好的正性保留中心迎风方案,在圣维南系统的三角网格上采用新颖的湿/干重建
  • DOI:
    10.1016/j.jcp.2018.07.038
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xin Liu;Jason Albright;Yekaterina Epshteyn;Alex;er Kurganov
  • 通讯作者:
    er Kurganov
結晶方位差と三重点による結晶粒界の発展方程式
晶体取向差和三相点引起的晶界演化方程
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yekaterina Epshteyn;Chun Liu;水野将司
  • 通讯作者:
    水野将司

Yekaterina Epshteyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yekaterina Epshteyn', 18)}}的其他基金

Structure-Preserving Algorithms for Hyperbolic Balance Laws with Uncertainty
不确定性双曲平衡定律的结构保持算法
  • 批准号:
    2207207
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Microstructure by Design: Integrating Grain Growth Experiments, Data Analytics, Simulation, and Theory
合作研究:DMREF:微观结构设计:整合晶粒生长实验、数据分析、模拟和理论
  • 批准号:
    2118172
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Chemotaxis Models in Biology and Texture Development in Materials: Numerical Methods, Analysis, and Modeling
生物学中的趋化模型和材料中的纹理发展:数值方法、分析和建模
  • 批准号:
    1112984
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

利用化学遗传学研究植物的向重力性
  • 批准号:
    32370306
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
KLF5在前列腺肿瘤管腔祖细胞向神经内分泌细胞转变中的功能和机制研究
  • 批准号:
    82303045
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TEA结构域转录因子2调控干细胞亚稳态向基态多能性转变的机理研究
  • 批准号:
    32300466
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
  • 批准号:
    12375228
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
CXCR5依赖的边缘区B细胞向滤泡树突状细胞呈递外泌体引发心脏移植排斥的研究
  • 批准号:
    82300460
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349935
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349934
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349936
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
  • 批准号:
    2345652
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了