Collaborative Research: Wave transport via eigenchannels of complex media

合作研究:通过复杂介质特征通道的波传输

基本信息

  • 批准号:
    1905465
  • 负责人:
  • 金额:
    $ 35.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL ABSTRACTUnlike line-of-sight propagation in a translucent medium, light transport in an opaque medium is a seemingly random walk that is described by a diffusion process. Common to electronic, acoustic, as well as the electromagnetic waves, most of the incident wave is reflected, and only a small fraction is transmitted via a multitude of partial waves with a broad range of delay times. Counterintuitively, this behavior can be altered by exploiting wave interference. This award supports an experimental and theoretical efforts to investigate the degree, to which one can manipulate input waves in a chip-scale platform, to achieve near-100% transmission or avoid temporal spread of a short pulse. The collaborative program of an experimental group at Yale University and a theoretical group at Missouri University of Science & Technology will train graduate and undergraduate students to conduct interdisciplinary research across the evolving boundaries of multiple fields, including condensed matter physics, optics of complex media, nanotechnology, and computational physics. The cutting-edge research will be incorporated in the curriculum at both participating institutions. This project includes an extensive exchange program with visits by faculty and students, summer internships, design and assembly of optical demonstrations for undergraduate research projects and recruitment activities.TECHNICAL ABSTRACTThe concept of transmission eigenchannels has been a cornerstone of mesoscopic physics but it is also applicable to electromagnetic waves and acoustic waves. Despite of the essential role of the eigenchannels in mesoscopic transport and vast opportunities for optical/acoustic imaging applications, little is known about the intrinsic properties of individual transmission eigenchannels or the time-delay eigenchannels. This collaborative program supports a joint experimental and theoretical studies on the statistical properties of individual eigenchannels, such as their fluctuations and correlations, in a unique on-chip photonic platform that allows both selective coupling of light into a single eigenchannel and direct probe of its spatial structure inside the random medium. Compared to electronic systems, robustness of coherence effects for photons at room temperature makes optical systems ideal for the in-depth fundamental studies of coherent wave transport. The proposed work addresses long-standing questions in mesoscopic physics regarding the nature and statistical properties of individual transmission and time-delay eigenchannels and the roles they play in static and dynamic wave transport. A systematic comparison between the experimental and numerical results will provide key insights into how the eigenchannels are formed, what determines their properties, and whether it is possible to achieve simultaneously spatial and temporal control of wave transmission. The research program will produce a wide range of experimental and numerical data, which will pave the way for the mesoscopic physics community to develop and verify new theoretical models for coherent wave transport. In optics, the fundamental understanding of coherent propagation via eigenchannels will inform a broad range of practical applications, from laser surgery, photovoltaics, imaging in turbid media, to random laser and energy-efficient ambient lighting. The collaborative experimental-theoretical program will train graduate and undergraduate students to conduct interdisciplinary research across the evolving boundaries of multiple fields, including condensed matter physics, optics of complex media, nanotechnology, and computational physics. The cutting-edge research will be incorporated in the curriculum at both participating institutions. The two teams will join force in education outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在半透明介质中,不透明的介质中的非技术抽象般的视线传播是一种看似随机的步行,它是通过扩散过程描述的。与电子,声学以及电磁波共有的共同,大多数入射波都反映了,并且只有一小部分通过具有较大延迟时间的众多部分波传播。违反直觉,可以通过利用波浪干扰来改变这种行为。该奖项支持实验和理论上的努力,以研究该程度,该程度可以在芯片尺度平台中操纵输入波,以实现接近100%的传播或避免短脉冲的时间扩散。耶鲁大学实验小组的合作计划和密苏里科学技术大学的理论小组将培训毕业生和本科生,以在多个领域不断发展的界限进行跨学科研究,包括凝结物理学,包括复杂媒体的光学,纳米技术,纳米技术和计算物理学。尖端研究将纳入两个参与机构的课程中。该项目包括一项广泛的交流计划,包括教职员工和学生的访问,暑期实习,设计和组装针对本科研究项目和招聘活动的光学演示。技术摘要Eigenchnels的概念Eigenchannels的概念已成为中镜物理学的基础,但也适用电磁波和声波。尽管特征班尼斯在介观运输中具有至关重要的作用,以及用于光学/声学成像应用的巨大机会,但对单个传输特征洋洋植物或时间延迟特征型的内在特性知之甚少。该协作计划在独特的芯片光子平台中支持了有关单个特征洋渠道的统计特性的联合实验和理论研究,例如它们的波动和相关性,该平台既可以选择将光耦合到单个eigenchnel和直接探测其空间的探测随机介质内的结构。与电子系统相比,室温下光子相干效应的鲁棒性使光系统非常适合对相干波传输的深入基础研究。所提出的工作解决了介绍物理学中有关个人传播和时间延迟特征班尼尔的性质和统计特性的长期问题,以及它们在静态和动态波传输中所扮演的角色。实验结果和数值结果之间的系统比较将提供关键的见解,以了解如何形成特征香?什么决定其性质以及是否有可能同时实现波动传输的空间和时间控制。该研究计划将产生广泛的实验和数值数据,这将为介观物理学界开发和验证相干波传输的新理论模型铺平道路。在光学元件中,对通过特征洋洋繁殖的相干传播的基本理解将为从激光手术,光伏,浑浊培养基中的成像到随机激光和能量有效的环境照明提供广泛的实用应用。协作实验理论计划将培训研究生和本科生,在多个领域的不断发展的界限上进行跨学科研究,包括冷凝物质物理学,复杂媒体的光学,纳米技术和计算物理学。尖端研究将纳入两个参与机构的课程中。这两个团队将加入教育外展活动。该奖项反映了NSF的法定任务,并被认为是使用基金会的知识分子优点和更广泛的影响评论标准的评估值得支持的。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sum rules for energy deposition eigenchannels in scattering systems
散射系统中能量沉积本征通道的求和规则
  • DOI:
    10.1364/ol.468697
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yamilov, Alexey;Bender, Nicholas;Cao, Hui
  • 通讯作者:
    Cao, Hui
Anderson localization of electromagnetic waves in three dimensions
  • DOI:
    10.1038/s41567-023-02091-7
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    A. Yamilov;S. Skipetrov;Tyler W. Hughes;M. Minkov;Zongfu Yu;H. Cao
  • 通讯作者:
    A. Yamilov;S. Skipetrov;Tyler W. Hughes;M. Minkov;Zongfu Yu;H. Cao
Customizing the Angular Memory Effect for Scattering Media
自定义散射介质的角度记忆效应
  • DOI:
    10.1103/physrevx.11.031010
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Yılmaz, Hasan;Kühmayer, Matthias;Hsu, Chia Wei;Rotter, Stefan;Cao, Hui
  • 通讯作者:
    Cao, Hui
Circumventing the optical diffraction limit with customized speckles
  • DOI:
    10.1364/optica.411007
  • 发表时间:
    2021-02-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Bender, Nicholas;Sun, Mengyuan;Cao, Hui
  • 通讯作者:
    Cao, Hui
Fluctuations and Correlations of Transmission Eigenchannels in Diffusive Media
  • DOI:
    10.1103/physrevlett.125.165901
  • 发表时间:
    2020-10-14
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bender, Nicholas;Yamilov, Alexey;Cao, Hui
  • 通讯作者:
    Cao, Hui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Cao其他文献

Production of functional human nerve growth factor from the submandibular glands of mice using a CRISPR/Cas9 genome editing system
使用 CRISPR/Cas9 基因组编辑系统从小鼠颌下腺生产功能性人类神经生长因子
  • DOI:
    10.1007/s11274-020-02951-x
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Yi Gu;Hui Cao;Fei Li;Jianli Yu;Rui Nian;Dongxiao Feng;Jingtao Lin;Haipeng Song;Wenshuai Liu
  • 通讯作者:
    Wenshuai Liu
Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement
低定时抖动锁模光纤激光器及其在双梳绝对距离测量中的应用综述
  • DOI:
    10.1016/j.npe.2018.12.002
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haosen Shi;Youjian Song;Runmin Li;Yuepeng Li;Hui Cao;Haochen Tian;Bowen Liu;Lu Chai;Minglie Hu
  • 通讯作者:
    Minglie Hu
A smartphone-integrated ratiometric fluorescent platform based on europium (III)-functionalized metal-organic frameworks for quantitative and visual detection of tetracycline
基于铕 (III) 功能化金属有机框架的智能手机集成比率荧光平台,用于四环素的定量和视觉检测
  • DOI:
    10.1016/j.microc.2024.111054
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Long Bai;Tai Ye;Caiwei Su;Jin;Min Yuan;Hui Cao;Liling Hao;Xiuxiu Wu;Weiyan Shi;Fengqin Yin;Fei Xu
  • 通讯作者:
    Fei Xu
Global dynamics for a TB transmission model with age-structure and delay
具有年龄结构和延迟的结核病传播模型的全局动态
Performance evaluation of a two-directional energy harvester with low-frequency vibration
低频振动双向能量采集器的性能评估
  • DOI:
    10.1088/1361-665x/ab7944
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Wenjun Ding;Zhaoyong Mao;Hui Cao;Keyan Wang
  • 通讯作者:
    Keyan Wang

Hui Cao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Cao', 18)}}的其他基金

Chip-scale massive-parallel ultrafast physical random bit generator
芯片级大规模并行超快物理随机位发生器
  • 批准号:
    1953959
  • 财政年份:
    2020
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
NSF/ENG/ECCS-BSF: Collaborative Research: Random Channel Cryptography
NSF/ENG/ECCS-BSF:协作研究:随机通道密码学
  • 批准号:
    1809099
  • 财政年份:
    2018
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
Developing novel chip-scale spectrometers for infrared sensing applications
开发用于红外传感应用的新型芯片级光谱仪
  • 批准号:
    1509361
  • 财政年份:
    2015
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Anomalous Transport and Wavefront Shaping in Complex Photonic Media
合作研究:复杂光子介质中的反常传输和波前整形
  • 批准号:
    1205307
  • 财政年份:
    2012
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
IDR: Collaborative Research: Novel Photonic Materials and Devices based on Non-Hermitian Optics
IDR:合作研究:基于非厄米光学的新型光子材料和器件
  • 批准号:
    1128542
  • 财政年份:
    2011
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
The Evolution Of Structural Color In Butterfly Wing Scales
蝴蝶翅膀鳞片结构颜色的演变
  • 批准号:
    0957680
  • 财政年份:
    2010
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mesoscopic Transport and Localization in Active Random Media
合作研究:主动随机介质中的介观传输和定位
  • 批准号:
    0808937
  • 财政年份:
    2008
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
CAREER: Microscopic Study of Photon Localization
职业:光子定位的微观研究
  • 批准号:
    0814025
  • 财政年份:
    2008
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
UV Photonic Crystal Light Sources
紫外光子晶体光源
  • 批准号:
    0823345
  • 财政年份:
    2008
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Mesoscopic Transport and Localization in Active Random Media
合作研究:主动随机介质中的介观传输和定位
  • 批准号:
    0704962
  • 财政年份:
    2007
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant

相似国自然基金

台风-海浪作用下考虑多种失效模式的浮式风力机结构可靠度研究
  • 批准号:
    52308507
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
  • 批准号:
    32300748
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黑潮区星载合成孔径雷达海面风和海浪探测研究
  • 批准号:
    42376174
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于气-海-浪-冰区域耦合模式的海浪对南极海冰影响研究
  • 批准号:
    42376237
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于浮标观测考虑海浪效应的海面蒸发波导模型研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
Collaborative Research: An Empirical Blueprint for the Gravitational-Wave Background
合作研究:引力波背景的经验蓝图
  • 批准号:
    2414468
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了