GOALI: Understanding Nucleation and Growth of Solute Clusters and GP Zones to Facilitate Industrial Fabrication of High-Strength Al Alloys
目标:了解溶质团簇和 GP 区的成核和生长,以促进高强度铝合金的工业制造
基本信息
- 批准号:1905421
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Summary:This project will study the nucleation of precipitates in high-strength aluminum (Al) alloys to facilitate their application in the automobile industry. Alloying elements called 'solutes' in metallic materials can exist in different forms, or phases. The solutes are in solid solution phases if they are randomly distributed in alloys as individual atoms; they can also be in certain small particles or 'precipitate' phases if some solutes agglomerate together to form specific structures through typical nucleation and growth progresses. Mechanical properties of alloys depend on the phases of solutes. Generally, alloys in solid solution phases are soft and ductile, convenient for low-cost mechanical forming and fabrication; but alloys with certain precipitate phases can be much harder and, therefore, difficult for mechanical forming compared with their counterparts in solid solution phases, so they are usually achieved in alloy components at final product stages. 7000 series aluminum alloys with zinc (Zn) and magnesium (Mg) as the major alloying elements have a high strength-to-weight ratio after proper precipitation hardening (similar strength but half of the weight compared with conventional steel). Their widespread implementation in the automotive industry as structural components can achieve vehicles with lightweight and high fuel efficiency. However, the solute solution phases in these alloys can quickly (~30 minutes) transform into precipitate phases to harden the alloys even at room temperature, making significant challenges of their low-cost forming and fabrication using current automobile manufacturing techniques. This University of Michigan-General Motors collaborative GOALI project aims to apply an integrated computational, experimental and statistical approach to understand and control the early stages of solid-solution-to-precipitate transformation kinetics of 7000 series aluminum alloys. The key objective is to design new alloy chemistries to retard the nucleation and growth of early-stage precipitate phases at room temperatures. These early-stage precipitates are mainly solute clusters and Guinier-Preston (GP) zones, both of which are made of a small number (less than 1000) of solute atoms agglomerated together. Then these alloys can stay in soft solid-solution phases for a longer time, convenient for conventional automobile manufacturing techniques. In addition, the new alloy chemistries should not impede the final precipitation hardening at a higher temperature. The proposed research will potentially enable implementation of 7000 series aluminum alloys in the automobile industry, contributing to vehicle light-weighting and favorably impacting energy savings, sustainability, and competitiveness. The generated computational-experimental-statistical framework and new knowledge will be applicable to alloy design in general and thus accelerate material development for meeting future needs. The proposed teaching and training elements will enable an integrated-computational-materials-engineering (ICME) approach to be widely imparted to senior undergraduate and graduate students in materials major and champion outreach/education activities of K-12 students as well as opportunities for students of underrepresented groups to be engaged in start-of-the-art materials research.Technical Summary: Nucleation and growth theories of precipitates in solids are key fundamental principles to guide the development and application of advanced age-hardenable structural alloys. However, the conventional theories fail to provide quantitative guidance for the development and processing of multicomponent commercial alloys, where nucleation and growth of precipitates can occur in multiple steps with substantial structural-composition transformations under the influence of defects. This gap between theory and practice limits the industrial applications of many commercial alloys that require special fabrication and manufacturing processes. For example, high-strength Al-Zn-Mg-based 7000 series alloys have severe formability limitations if stamped more than ~30 minutes after the solutionizing treatment. These limitations result from fast precipitate kinetics at room temperature ('natural aging'), mainly the nucleation and growth of solute clusters and Guinier-Preston (GP) zones that can act as nuclei for subsequent precipitates. Understanding and controlling these nucleation and growth processes can slow down natural aging, and thereby expand the room temperature forming window amenable to the sustainable manufacturing of 7000 series Al alloys and other lightweight high-strength materials in the automobile industry, which has a significant impact on vehicle mass reduction.In this industry-university collaborative GOALI project, the applicants plan to apply an integrated theoretical, computational, experimental and machine learning approach to understand and control the nucleation and growth kinetics of solute clusters and GP zones in Al-Zn-Mg-based alloys. A multi-scale simulation framework based on first-principles calculations, atomistic simulations, and phenomenological hardening model will be constructed to quantitatively describe the solute clusters and GP zone kinetics and their effects on hardness increments. Alloys with the proposed solutes will be synthesized and subjected to thermal processing and indentation hardness tests to verify their natural aging kinetics. A combination of high-resolution transmission electron microscopy, electron energy loss spectroscopy and computer image simulations will be used to characterize the solute clusters and fine precipitates to verify the nucleation and growth mechanisms. A statistical machine learning surrogate model will be constructed to speed up the search of alloy chemistries to retard natural aging with further experimental confirmations. In this project, the research team proposes a transformative alloy design concept to tune the early-stage precipitation kinetics of complex commercial alloys by searching the trace solute elements to control the structures and compositions of solid clusters and GP zones beyond the role of individual atoms of trace solute elements. The research team also proposes an efficient routine to design advanced alloys with a large parameter space by applying the integrated computational, experimental and statistical machine learning methods. Quantitative understanding of precipitate nucleation and growth kinetics in 7000 series Al alloys using the newly developing computational and experimental tools will facilitate the development of advanced nucleation and growth theories for generalized multicomponent alloy systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanism of local lattice distortion effects on vacancy migration barriers in fcc alloys
面心立方合金中局部晶格畸变对空位迁移势垒的影响机制
- DOI:10.1103/physrevmaterials.6.073601
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Xi, Zhucong;Zhang, Mingfei;Hector, Louis G.;Misra, Amit;Qi, Liang
- 通讯作者:Qi, Liang
In situ transmission electron microscopy investigation of nucleation of GP zones under natural aging in Al-Zn-Mg alloy
- DOI:10.1016/j.scriptamat.2021.114319
- 发表时间:2021-10-07
- 期刊:
- 影响因子:6
- 作者:Chatterjee, Arya;Qi, Liang;Misra, Amit
- 通讯作者:Misra, Amit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Qi其他文献
Multiresource-Constrained Selective Disassembly With Maximal Profit and Minimal Energy Consumption
多资源约束下的选择性拆卸,利润最大化、能耗最小
- DOI:
10.1109/tase.2020.2992220 - 发表时间:
2021-04 - 期刊:
- 影响因子:5.6
- 作者:
Xiwang Guo;MengChu Zhou;Shixin Liu;Liang Qi - 通讯作者:
Liang Qi
Effects of Er addition and cooling rate on the corrosion resistance of Zn-5Al alloys
Er添加量和冷却速度对Zn-5Al合金耐蚀性的影响
- DOI:
10.1080/02670836.2022.2157529 - 发表时间:
2022 - 期刊:
- 影响因子:1.8
- 作者:
Zhen Ge;Chengcong Huang;Liang Qi;Liang Tang;Shengyi You - 通讯作者:
Shengyi You
A power-efficient and re-configurable analog artificial neural network classifier
一种高效且可重新配置的模拟人工神经网络分类器
- DOI:
10.1016/j.mejo.2021.105022 - 发表时间:
2021-03 - 期刊:
- 影响因子:2.2
- 作者:
Ahmed Reda Mohamed;Liang Qi;Guoxing Wang - 通讯作者:
Guoxing Wang
Non-Local Electrostatic Gating Effect in Graphene Revealed by Infrared Nano-Imaging
红外纳米成像揭示石墨烯中的非局部静电门控效应
- DOI:
10.1002/smll.202105687 - 发表时间:
2021 - 期刊:
- 影响因子:13.3
- 作者:
Deng Aolin;Hu Cheng;Shen Peiyue;Chen Jiajun;Luo Xingdong;Lyu Bosai;Watanabe Kenji;Taniguchi Takashi;Wang Rongming;Liang Qi;Ma Jie;Shi Zhiwen - 通讯作者:
Shi Zhiwen
A simple method to synthesize worm-like AlN nanowires and its field emission studies
蠕虫状AlN纳米线的简单合成方法及其场发射研究
- DOI:
10.1088/1674-1056/abe3e7 - 发表时间:
2021-02 - 期刊:
- 影响因子:1.7
- 作者:
Liang Qi;Yang Meng-Qi;Wang Chang-Hao;Wang Ru-Zhi - 通讯作者:
Wang Ru-Zhi
Liang Qi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Qi', 18)}}的其他基金
Fundamental Understanding of Chemical Complexity on Crack Tip Plasticity of Refractory Complex Concentrated Alloys
化学复杂性对难熔复合浓缩合金裂纹尖端塑性的基本认识
- 批准号:
2316762 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2323765 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Manufacturing of Low-cost Titanium Alloys by Tuning Highly-indexed Deformation Twinning
合作研究:通过调整高指数变形孪晶制造低成本钛合金
- 批准号:
2121866 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: First-Principles Predictions of Solute Effects on Defect Stability and Mobility in Advanced Alloys
职业:溶质对先进合金缺陷稳定性和迁移率影响的第一性原理预测
- 批准号:
1847837 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
基于场景理解的全景视频智能压缩关键技术研究
- 批准号:62371310
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
典型热带生态系统大气零价汞源汇格局变化及机理解析
- 批准号:42377255
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
- 批准号:62306239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度理解的大规模互联网虚假新闻检测研究
- 批准号:62302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SlCNR8调控番茄植株衰老的机理解析
- 批准号:32360766
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
新規数理モデルを用いたパートナー分子によるαシヌクレイン凝集核形成制御機構の解明
使用新的数学模型阐明伙伴分子对 α-突触核蛋白聚集成核的控制机制
- 批准号:
24K09756 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: Understanding Photocatalytic Reduction-Enabled Continuous Nucleation of Multimetallic Nanoparticles
EAGER:了解多金属纳米粒子的光催化还原连续成核
- 批准号:
2325247 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Understanding the enzymatic mechanisms of the oxygen-evolving complex based on theoretical X-ray spectroscopy
基于理论 X 射线光谱学了解放氧复合物的酶促机制
- 批准号:
22K05035 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
巨核球成熟における一次絨毛由来小胞の生理機能解明および生体外血小板製造への応用
阐明巨核细胞成熟过程中原代绒毛来源的囊泡的生理功能及其在体外血小板生产中的应用
- 批准号:
22K18169 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NanoMassCreator. Nanoparticle live synthesis: understanding of particle nucleation and growth by in-situ mass photometry
纳米质量创造者。
- 批准号:
EP/X025713/1 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Fellowship