Mixed Rod-Coil Polymer Brushes Tailored for Controlled Surface Topography

专为受控表面形貌而定制的混合棒线圈聚合物刷

基本信息

  • 批准号:
    1905403
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

PART 1: NON-TECHNICAL SUMMARY: Polymers are long molecules that make up the many kinds of coatings, fabrics and plastics we use. Some polymers can be flexible and soft. Other polymers can be long and stiff. By combining stiff and flexible polymers in a single system formed on a surface, we have learned that we can make nanoscale spiky brush-like surfaces using careful temperature control and coating methods. The PI and his group plan to better understand this surface formation process by making new combinations of soft and stiff polymers, by using advanced tools to study their organization, and by employing computers to model the structure and to predict their behavior. This new way of making surfaces opens up many interesting applications. For example, the surface mimics the protein spikes present on virus surfaces that are used by nature to identify target cells, take part in the entry into the cell, and also to prevent identification by antibodies. These materials can be used to study the behavior of cells on topics ranging from how they work to the behavior of the immune system. Because the spikes are vertically aligned, they may also act as nanowires, so they can be used in energy production and storage systems like solar cells and batteries. Finally, these spikes may be piezoelectric, i.e. they could convert electrical energy to motion (or sound) and motion to electrical energy. This research program will also serve as a mechanism to teach students about polymers and materials science, create globally aware graduate students, and expose students to a collaborative environment. Graduate students will be able to work with the research groups of our collaborators as parts of teams and to take part in exchange visits. Lessons learned from these research programs will be used to teach K-12 students and to be applied in high school teachers' workshops. PART 2: TECHNICAL SUMMARY:Coil polymer brushes synthesized using living radical polymerization methods will be combined with rod brushes with high persistence lengths grown from surfaces made using a variety of living and pseudo-living chemistries. Phase separation aided by solvent processing and guided by nanolithography will be used to control in-plane structure. A variety of chemical and process methods will be used to limit macroscopic phase separation and thereby direct assembly of topographical and chemical structures. Brush growth will employ new, chemically tailored brush initiators for single chain and binary chain growth to form rod-coil mixed brush pairings. To direct brush structure and rod-coil phase separation, brush initiators will be patterned at length scales of a few 10s of nanometers using state-of-the-art lithography methods to control spacing of the brush spikes. Brush organization will be compared to computational predictions which will be used to guide both brush design and selection and to anticipate the resulting physical structure and aid characterization studies. Characterization of the brushes will be made using a selection of analytical methods including grazing incidence (GI) SAXS and WAXS, neutron reflectivity and resonant soft X-ray scattering (RSoXS) measurements. Studies of the conductivity and piezoelectric character of the rod-coil brush films will aid in our understanding of the mixed brush structure. Through collaborations, studies of these materials as cell membrane substrates, for targeted biomolecular binding, as piezoelectric and as conducting materials with unusual transport pathways, will also provide information about key length scales and rod-brush organization. .This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第 1 部分:非技术摘要:聚合物是长分子,构成我们使用的多种涂料、织物和塑料。一些聚合物具有柔韧性和柔软性。其他聚合物可能又长又硬。通过将刚性和柔性聚合物结合在表面上形成的单一系统中,我们了解到,我们可以使用仔细的温度控制和涂层方法来制造纳米级尖刺刷状表面。 PI 和他的团队计划通过制造软质和硬质聚合物的新组合、使用先进的工具研究它们的组织、以及使用计算机对结构进行建模并预测它们的行为,更好地了解这种表面形成过程。这种制造表面的新方法开辟了许多有趣的应用。例如,该表面模仿了病毒表面上存在的蛋白质刺突,其本质上用于识别靶细胞、参与进入细胞以及防止抗体识别。这些材料可用于研究细胞的行为,涵盖从细胞如何工作到免疫系统行为等主题。由于尖峰是垂直排列的,因此它们也可以充当纳米线,因此可以用于太阳能电池和电池等能源生产和存储系统。最后,这些尖峰可以是压电的,即它们可以将电能转换为运动(或声音),并将运动转换为电能。该研究项目还将作为一种机制,向学生传授聚合物和材料科学知识,培养具有全球意识的研究生,并使学生接触协作环境。研究生将能够与我们合作者的研究小组作为团队的一部分进行合作,并参加交流访问。从这些研究项目中汲取的经验教训将用于教授 K-12 学生,并应用于高中教师研讨会。第 2 部分:技术摘要:使用活性自由基聚合方法合成的线圈聚合物刷将与使用各种活性和拟活性化学物质制成的表面生长的具有高持久长度的杆刷相结合。由溶剂处理辅助和纳米光刻引导的相分离将用于控制面内结构。将使用各种化学和工艺方法来限制宏观相分离,从而直接组装形貌和化学结构。刷生长将采用新的化学定制刷引发剂进行单链和二元链生长,以形成杆线圈混合刷配对。为了指导刷结构和杆线圈相分离,刷引发器将使用最先进的光刻方法以几十纳米的长度尺度进行图案化,以控制刷尖峰的间距。刷子组织将与计算预测进行比较,计算预测将用于指导刷子设计和选择,并预测最终的物理结构和辅助表征研究。将使用一系列分析方法来表征电刷,包括掠入射 (GI) SAXS 和 WAXS、中子反射率和共振软 X 射线散射 (RSoXS) 测量。对棒线圈刷膜的导电性和压电特性的研究将有助于我们理解混合刷结构。通过合作,对这些材料作为细胞膜基底、用于靶向生物分子结合、作为压电材料以及作为具有不寻常传输途径的导电材料的研究也将提供有关关键长度尺度和杆刷组织的信息。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Liquid Crystals to Probe the Organization of Helical Polypeptide Brushes Induced by Solvent Pretreatment
利用液晶探测溶剂预处理诱导的螺旋多肽刷的组织
  • DOI:
    10.1021/acs.macromol.1c01125
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Tsuei, Michael;Tran, Hai;Roh, Sangchul;Ober, Christopher K.;Abbott, Nicholas L.
  • 通讯作者:
    Abbott, Nicholas L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Zhong其他文献

Crystallographically textured Ba0.8La0.2Fe11.8-xCu0.2O19-delta hexaferrites with narrow FMR linewidth
具有窄 FMR 线宽的晶体织构 Ba0.8La0.2Fe11.8-xCu0.2O19-δ 六方铁氧体
  • DOI:
    10.1016/j.ceramint.2019.12.110
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Wu Chuanjian;Li Jinpeng;Lan Zhongwen;Yu Zhong;Jiang Xiaona;Guo Rongdi;Luo Quanbang;Sun Ke
  • 通讯作者:
    Sun Ke
Benign Deep-Level Defects in Cesium Lead Iodine Perovskite
铯铅碘钙钛矿的良性深部缺陷
  • DOI:
    10.1021/acs.jpcc.1c08741
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiajia Zhang;Yu Zhong;Gang Li
  • 通讯作者:
    Gang Li
Characterizing armchaired and zigzagged phases: Antimony on oxide layer of Cu(110)
表征扶手相和锯齿形相:Cu(110) 氧化层上的锑
  • DOI:
    10.1016/j.vacuum.2020.110036
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Yu Zhong;Min Huang;Guodong Huang;Shuangzan Lu;Qinmin Guo;Yinghui Yu
  • 通讯作者:
    Yinghui Yu
Exchange correlation and critical temperature in calcium substituted strontium hexaferrites: Experimental and theoretical evaluation
钙取代锶六方铁氧体的交换相关性和临界温度:实验和理论评估
  • DOI:
    10.1016/j.jmmm.2020.166662
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Wu Chuanjian;Jiang Youwei;Yu Zhong;Tang Mingxing;Nie Jinlan;Jiang Xiaona;Li Yuanxing;Lan Zhognwen;Sun Ke
  • 通讯作者:
    Sun Ke
Electrochemical Thin Film Deposition of Copper(I) Halides in Aqueous Solution: Substrate Extension and Structure Transformation
水溶液中卤化铜(I)的电化学薄膜沉积:基底延伸和结构转变
  • DOI:
    10.1002/admi.202102239
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Si‐Yu Xu;Ya‐Nan Wu;Bi‐Cui Chen;Pei‐Wen Huang;Zhi‐Zhuan Zhang;Yu Zhong;Yi Zhao;Xiao‐Ying Huang;Ke‐Zhao Du
  • 通讯作者:
    Ke‐Zhao Du

Yu Zhong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

冻融环境下GFRP锚杆锚固界面粘结劣化机理及其设计方法研究
  • 批准号:
    52308165
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
GFRP锚杆锚固结构时变损伤的压电主动传感检测理论及试验研究
  • 批准号:
    42307237
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
秀丽隐杆线虫肠道-神经系统实时互作模式及分子机制研究
  • 批准号:
    32371188
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
杆面混杂超材料晶格的抗撞吸能机理与性能调控研究
  • 批准号:
    52305244
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
六级杆碰撞反应池MC-ICPMS高精度同位素分析技术开发——以Ca、S同位素为例
  • 批准号:
    42363003
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Isolation, Characterization and Reconstruction of Vertebrate Striated Muscle Myosin Filaments
脊椎动物横纹肌肌球蛋白丝的分离、表征和重建
  • 批准号:
    10043292
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
Isolation, Characterization and Reconstruction of Vertebrate Striated Muscle Myosin Filaments
脊椎动物横纹肌肌球蛋白丝的分离、表征和重建
  • 批准号:
    10268975
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
DMREF: Paired ionic-electronic conductivity in self-assembling conjugated rod-ionic coil segmented copolymers and mesogens with ionic liquid units
DMREF:自组装共轭棒离子线圈分段共聚物和具有离子液体单元的介晶中的成对离子电子电导率
  • 批准号:
    1922259
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Rod-Coil Polymer Functionalized Nanoparticles
棒状线圈聚合物功能化纳米粒子
  • 批准号:
    539317-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of of pi-conjugated rod-coil copolymer for energy conversion materials
能源转换材料用π共轭棒线圈共聚物的研制
  • 批准号:
    17K05988
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了