Achieving the Full Phase Space of Inorganic Natural Products and Beyond in Nanocrystal Synthesis
在纳米晶体合成中实现无机天然产物的全相空间及超越
基本信息
- 批准号:1905265
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nature, through geology, has created an inspiring array of crystals with a wide range of properties (color, porosity, and mechanical strength, etc.). The unique properties of different types of crystals are a result of not only their chemical compositions, but also the precise and specific arrangement of the constituent atoms. As nanosized crystals (of dimensions of only about 1/1000 times the width of a strand of hair), these diverse properties could lead to applications as far reaching as earth abundant and active industrial catalysts, new cancer treatments, magnetic storage media, better batteries, and inexpensive and efficient solar panels. Before any of this is possible, the routes to synthesize these crystals at the nanoscale must first be discovered because the extreme conditions of geology cannot be easily replicated in the chemistry laboratory or industrial facilities. The research group of Professor Janet Macdonald at Vanderbilt University seeks to understand how the precise placements of atoms in nano-sized rocks can be controlled. Experiments are designed to interrogate what happens to organic molecules and metal atoms when they react and how to control the precise placement of atoms in these nano-sized rocks. The ultimate goal is to make all the phases of crystals that geology does, and possibly be able to design and prepare crystals with new phases. The project also examines how the surfaces of small pieces of iron oxide pigments bind to granite surfaces in the remarkably durable rock paintings of the Anishinaabe, an indigenous people of the United States and Canada. The goal here is to rediscover the lost technique for rock art and return it to the Anishinaabe. The project supports the training of researchers in high school, undergraduate and graduate student levels. Established and new connections encourage Anishinaabe researchers to take part in the research. Specifically, this project uses libraries of organic molecules that contain sulfur and selenium atoms as precursors to obtain the diverse crystals made of these materials. A wide, sweeping and systematic study of the phase-controlled synthesis of iron, cobalt, nickel and copper chalcogenide nanocrystals is being performed. Libraries of organochalcogenides are employed to separate the roles of kinetic rates from the decomposition mechanisms in phase-determination. Organic reaction products are identified to decipher the mechanisms of decomposition of the organochalcogenides on the metals and deduce the impact of these mechanisms on phase control. In a second aim, organoselenol and diselenide chemistry facilitates polytypic selection in the transition metal chalcogenides. In situ solution 1H and 77Se NMR spectroscopy of nanocrystal reactions are used to understand how the organochalcogenide chemistry influences the polytypism in nanocrystal synthesis. In the final thrust, adherence of hematite pigments to silica is studied under varied application conditions precisely controlled using laboratory chemicals. Translation of these studies to naturally sourced materials follows.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大自然通过地质学创造了具有多种特性(颜色,孔隙率和机械强度等)的鼓舞人心的晶体阵列。 不同类型晶体的独特特性不仅是其化学成分的结果,而且是成分原子的精确和特定排列的结果。由于纳米晶体(仅是头发宽度的1/1000倍的尺寸),这些多样性的特性可能会导致应用到地球丰富而活跃的工业催化剂,新的癌症处理,磁性储存媒体,更好的电池,更好的电池和廉价且高效的太阳能面板。在任何可能的情况下,必须首先发现在纳米级中合成这些晶体的途径,因为地质的极端条件不能在化学实验室或工业设施中复制。 范德比尔特大学(Vanderbilt University)的珍妮特·麦克唐纳(Janet MacDonald)教授的研究小组旨在了解如何控制原子在纳米大小的岩石中的确切位置。 实验旨在询问有机分子反应时发生的情况以及如何控制原子在这些纳米大小岩石中的精确放置。 最终目标是使地质所做的晶体的所有阶段,并可能能够设计和准备新阶段的晶体。该项目还研究了如何在美国和加拿大的土著人民Anishinaabe(Anishinaabe)耐用的岩石绘画中与花岗岩表面的表面结合。这里的目的是重新发现摇滚艺术的丢失技术,并将其归还给Anishinaabe。该项目支持在高中,本科和研究生级别的研究人员培训。建立的新联系鼓励Anishinaabe的研究人员参与研究。具体而言,该项目使用含有硫和硒原子的有机分子文库作为获得这些材料制成的各种晶体的前体。正在进行对铁,钴,镍和铜硫酸硫化剂纳米晶体的相控制合成的广泛,扫描和系统的研究。 使用有机化元素的库来将动力学速率的作用与分解机制分离相确定。有机反应产物被鉴定出来破译有机元中元素对金属的分解机制,并推断出这些机制对相控制的影响。在第二个目的中,有机苯酚和脱苯胺化学促进了过渡金属葡萄糖核化合物中的多型选择。原位溶液的1H和77SE NMR纳米晶反应的光谱法用于了解有机盐化学如何影响纳米晶体合成中的多型。在最终的推力中,在使用实验室化学物质精确控制的各种应用条件下研究了赤铁矿对二氧化硅的粘附。将这些研究翻译成自然来源的材料。该奖项反映了NSF的法定任务,并被认为是使用基金会的知识分子优点和更广泛的影响评论标准的评估值得支持的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular Decomposition Routes of Diaryl Diselenide Precursors in Relation to the Phase Determination of Copper Selenides
- DOI:10.1021/acs.inorgchem.2c02042
- 发表时间:2022-09-07
- 期刊:
- 影响因子:4.6
- 作者:Koziel, Alexandra C.;Goldfarb, Ralston B.;Macdonald, Janet E.
- 通讯作者:Macdonald, Janet E.
Alkyl selenol reactivity with common solvents and ligands: influences on phase control in nanocrystal synthesis
- DOI:10.1039/d1nr06282d
- 发表时间:2021-12-06
- 期刊:
- 影响因子:6.7
- 作者:Ho, Eric A.;Peng, Antony R.;Macdonald, Janet E.
- 通讯作者:Macdonald, Janet E.
Role of carboxylates in the phase determination of metal sulfide nanoparticles
羧酸盐在金属硫化物纳米颗粒物相测定中的作用
- DOI:10.1039/d3nh00227f
- 发表时间:2023
- 期刊:
- 影响因子:9.7
- 作者:Shults, Andrey A.;Lu, Guanyu;Caldwell, Joshua D.;Macdonald, Janet E.
- 通讯作者:Macdonald, Janet E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janet Macdonald其他文献
Janet Macdonald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janet Macdonald', 18)}}的其他基金
The Determinants of Crystalline Phase in Bottom-Up Nanocrystal Synthesis
自下而上纳米晶合成中晶相的决定因素
- 批准号:
2305161 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: SusChEM: Hybrid Nanoparticles of the Copper Sulfides
职业:SusChEM:硫化铜的混合纳米颗粒
- 批准号:
1253105 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
近代东北南满铁路沿线工业城市的建设和技术传播
- 批准号:52378030
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
薤白基于治疗“脘腹痞满胀痛”传统功效的抗胃癌药效物质基础与作用机制研究
- 批准号:82374014
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
- 批准号:82204619
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于GPR30对铁蓄积的调控作用研究蒙药那仁满都拉抗骨质疏松的效应及机制
- 批准号:82260981
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
相似海外基金
STTR Phase II: Dermatologist-level detection of suspicious pigmented skin lesions from high-resolution full-body images
STTR II 期:通过高分辨率全身图像对可疑色素性皮肤病变进行皮肤科医生级别的检测
- 批准号:
2335086 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Simultaneous Transmit-Receive and Full-Duplex Millimeter-Wave Massive Multiple-Input and Multiple-Output (MIMO) Systems
SBIR 第一阶段:同时发送-接收和全双工毫米波大规模多输入多输出 (MIMO) 系统
- 批准号:
2322297 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Full participation of people with physical disabilities in active eSports
身体残疾人士充分参与活跃的电子竞技
- 批准号:
10646057 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
SBIR Phase II: Full-Scale Demonstration of Autonomous Robotic Greenhouse for Sustainable Local Food Production
SBIR 第二阶段:用于可持续当地粮食生产的自主机器人温室的全面示范
- 批准号:
2233520 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Cooperative Agreement