Engineering deterministic electron correlations and topological states in site-controlled III-V quantum droplets

点控 III-V 量子液滴中的工程确定性电子相关性和拓扑态

基本信息

  • 批准号:
    1904610
  • 负责人:
  • 金额:
    $ 44.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Nontechnical description: Todays computers are built using transistors fabricated in the semiconductor silicon. Improvements in these kinds of transistors are slowing, and will come to an end in the next few years. Quantum computing is a new way of doing computation that breaks with the way computing is currently done. This approach, using quantum mechanical elements called qubits, requires new materials and approaches. These qubits and their interactions are very fragile, so protection from quantum errors is critical in creating a quantum computer. This project will investigate the formation of very robust quantum mechanical elements (quantum gates) using an effect known as topological protection. Topological protection implies using composite fermions vortexes in a p-wave superconductor which obey non-Abelian quantum statistics and are known as non-Abelian anyons. A physical realization of topological quantum gate implies the use of solid-state platforms providing a set of localized non-Abelian anyons combined with a "tweezer" to perform their braiding and fusion, and a phase detector. The project involves a collaboration of groups at the University of Notre Dame, the Tyndall National Institute in the Republic of Ireland, and Queen's University Belfast in Northern Ireland, to develop and investigate a new material system for a topological quantum gate, based on In(Ga)P/GaInP quantum Hall puddles. The goal is to produce deterministic quantum Hall puddles, containing a set of localized non-Abelian anyons, that can be used in large scale quantum computing. This project also helps in the development of human resources by providing research and training experience to undergraduate and graduate students in the areas of materials processing and characterization, nanofabrication and experimental measurements.Technical description: Protection from quantum errors is a critical point in the realization of quantum computing. One line of research in the scientific community is based on the expectation that strong protection for quantum operations will occur in quantum computation systems based on qubits built from topological states. An efficient platform for the realization of such fault tolerant topological quantum computing could be built using strongly correlated electron systems supporting the so-called Majorana zero modes (MZMs), having non-Abelian quantum statistics. Such topological quantum states were first detected in the quantum Hall effect, and they are represented by vortex composite fermion quasiparticles, known as anyons, composed of magnetic flux quanta attached to electrons/holes or defects in one and two-dimensional p-wave superconductors. Several composite fermion systems are known which supports MZMs, but routes to their implementation in a quantum processor are not well defined, primarily due to difficulties in implementing the control of qubits based on these quasiparticles. This international collaborative project aims to develop and investigate a novel system to realize MZMs: a quantum Hall puddles. Composite fermions were observed in preliminary experiments with quantum Hall puddles using near-field scanning optical microscopy. This opens the possibility for creating localized MZMs, with a number of non-trivial advantages, such as a relatively high operating temperature, zero external magnetic fields, and electrostatic "tweezers" to perform braiding and fusion. The goal is to produce deterministic quantum Hall puddles to support "large scale" development of localized MZMs using selective area epitaxy in the In(Ga)P/GaInP systems and development of scanning charge probe techniques for their characterization. Production of these quantum Hall puddles is an important step in the development of a scalable approach to quantum computers. The grown structures are studied by using structural characterization, optical spectroscopy, and nanoelectronic charge measurements, and used to fabricate candidate quantum gates.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:当今的计算机是使用半导体硅制造的晶体管构建的。这些类型的晶体管的改进正在放缓,并将在未来几年结束。量子计算是一种进行计算的新方法,它会随着当前完成计算的方式破坏。这种方法使用称为Qubits的量子机械元素,需要新的材料和方法。这些量子位及其相互作用非常脆弱,因此免受量子错误的保护对于创建量子计算机至关重要。该项目将使用称为拓扑保护的效果来研究非常健壮的量子机械元件(量子门)的形成。拓扑保护意味着在遵守非亚伯量子统计的p波超导体中使用复合费米子涡流,被称为非亚伯利亚人。拓扑量子门的物理实现意味着使用固态平台,提供了一组局部的非亚伯式的人,并结合了“ Tweezer”,以执行其编织和融合以及相位检测器。该项目涉及巴黎圣母院,爱尔兰共和国的廷德尔国家研究所以及北爱尔兰皇后大学贝尔法斯特的团体合作,以根据(GA)P/Gain P/Gainp Quantum Hall Puddles开发和调查一种新的材料系统。目的是生产确定性的量子大厅水坑,其中包含一组局部的非亚伯式任何人,可以在大规模量子计算中使用。该项目还通过为材料处理和表征,纳米制作和实验测量领域的本科和研究生提供研究和培训经验来帮助发展人力资源。技术描述:保护量错误是实现量子计算的量子错误的关键点。科学界的一项研究是基于这样的期望,即基于拓扑状态构建的量子位,将在量子计算系统中进行强大的量子操作保护。可以使用具有非亚洲量子统计数据的所谓Majorana零模式(MZM)的强度相关的电子系统来构建一个有效的耐受性拓扑量子计算的有效平台。首先在量子厅效应中检测到这种拓扑量子状态,并由涡流复合费米式准粒子(称为AYONS)表示,由磁通量量子组成,该磁通量与电子/孔或一个和二维P-P-Wave超导体中的缺陷或缺陷组成。已知几种支持MZM的复合费米安系统,但是在量子处理器中实现的途径没有很好地定义,这主要是由于难以基于这些准粒子实施Qubits的控制。这个国际协作项目旨在开发和调查一种实现MZM的新型系统:量子厅里的水坑。在使用近场扫描光学显微镜的量子大厅水坑的初步实验中观察到了复合费物。这打开了创建局部MZM的可能性,具有许多非平凡的优势,例如相对较高的工作温度,零外部磁场和静电“ Tweezer”来执行编织和融合。目的是生产确定性的量子大厅水坑,以使用在(GA)p/Gainp系统中选择性区域外观和开发扫描电荷探针技术来支持局部MZM的“大规模”开发。这些量子大厅水坑的生产是开发量子计算机方法的重要步骤。通过使用结构表征,光谱和纳米电荷电荷测量来研究生长的结构,并用于制造候选量子量子门。这奖反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来支持的。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using single-electron box arrays for voltage sensing applications
  • DOI:
    10.1063/5.0005425
  • 发表时间:
    2020-05-26
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Filmer, Matthew J.;Zirkle, Thomas A.;Snider, Gregory L.
  • 通讯作者:
    Snider, Gregory L.
Radio Frequency Reflectometry of Single-Electron Box Arrays for Nanoscale Voltage Sensing Applications
  • DOI:
    10.3390/app10248797
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zirkle, Thomas A.;Filmer, Matthew J.;Snider, Gregory L.
  • 通讯作者:
    Snider, Gregory L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Snider其他文献

Gregory Snider的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Snider', 18)}}的其他基金

Adiabatic Systems for Low Power Computation
用于低功耗计算的绝热系统
  • 批准号:
    1914061
  • 财政年份:
    2019
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Standard Grant
Scanned Probe Microscopy using Single-Electron Device Arrays
使用单电子器件阵列的扫描探针显微镜
  • 批准号:
    1509087
  • 财政年份:
    2015
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Standard Grant
Ultra-Sensitive Electrometers for Nano-Fluidics
用于纳米流体的超灵敏静电计
  • 批准号:
    0901659
  • 财政年份:
    2009
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Standard Grant
Interfacing CMOS and Self-Assembled Nanostructures
连接 CMOS 和自组装纳米结构
  • 批准号:
    0725794
  • 财政年份:
    2007
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Standard Grant
SGER: Bridging Nanoelectronics to CMOS
SGER:连接纳米电子学和 CMOS
  • 批准号:
    0407734
  • 财政年份:
    2004
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Standard Grant
Fabrication and Characterization of High Temperature Nanostructures
高温纳米结构的制备和表征
  • 批准号:
    9976577
  • 财政年份:
    1999
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Continuing Grant
Characterization of Single and Coupled Quantum Dots Using Far-Infrared Radiation
使用远红外辐射表征单个和耦合量子点
  • 批准号:
    9707800
  • 财政年份:
    1997
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Continuing Grant
Research Equipment Grant: Reactive Ion Etching for Device Fabrication and Materials Studies
研究设备补助金:用于设备制造和材料研究的反应离子蚀刻
  • 批准号:
    9500033
  • 财政年份:
    1995
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Standard Grant

相似国自然基金

不确定性视角下碳交易与环境税的交互效果评估及协同优化设计
  • 批准号:
    72304063
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
知识与数据混合驱动的含缺陷点阵结构不确定性分析与优化方法研究
  • 批准号:
    12302149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
信息传播中的货币政策不确定性:机制、测度与金融风险效应研究
  • 批准号:
    72303256
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合物理的数据驱动深埋隧道围岩灾变机制及不确定性研究
  • 批准号:
    42377174
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
离心叶轮冷热态双重不确定性几何变形的流动机理及鲁棒设计方法
  • 批准号:
    52376030
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Three-Dimensional Modelling of X-Ray Emission in Electron Probe Microanalysis Based on Deterministic Transport Equations
基于确定性输运方程的电子探针显微分析中 X 射线发射的三维建模
  • 批准号:
    275207500
  • 财政年份:
    2015
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Research Grants
Deterministic simulation of electron and phonon transport in III-V devices
III-V 器件中电子和声子输运的确定性模拟
  • 批准号:
    215913023
  • 财政年份:
    2013
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Research Grants
Innovation Deterministic Particle Transport for RTP
RTP 的创新确定性粒子传输
  • 批准号:
    7064282
  • 财政年份:
    2005
  • 资助金额:
    $ 44.45万
  • 项目类别:
Innovation Deterministic Particle Transport for RTP
RTP 的创新确定性粒子传输
  • 批准号:
    6916797
  • 财政年份:
    2005
  • 资助金额:
    $ 44.45万
  • 项目类别:
Subscale Inversion of X-Ray Emission in Electron Probe Microanalysis Based on Deterministic Transport Equations
基于确定性输运方程的电子探针显微分析中X射线发射的亚尺度反演
  • 批准号:
    466010736
  • 财政年份:
  • 资助金额:
    $ 44.45万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了