Investigating Approximate Number System Computation in Children

研究儿童近似数系计算

基本信息

  • 批准号:
    1844155
  • 负责人:
  • 金额:
    $ 57.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This project investigates children's capacity for arithmetic computation without symbols or formal notation, before they encounter formal mathematics training in school. The Approximate Number System (ANS), a cognitive system which is operational from early infancy onward, allows humans to approximately quantify sets of items without language or symbols. Research suggests that the ANS could potentially support arithmetic operations, such as addition and subtraction, and that the ANS could therefore serve as a bridge to learning formal mathematics. However, the arithmetic capacity of the ANS, and how this capacity develops, is not well understood. This project fills that knowledge gap by systematically examining the computational capacity of the ANS using a series of experiments designed to assess young children before they learn the formal rules of arithmetic in school. The project addresses theoretical debates about the early cognitive architecture of the ANS and its role in arithmetic computation. The project will identify potential ways that educators could leverage children's pre-symbolic mathematical intuitions in order to help them learn formal mathematics. This has implications for STEM (Science, Technology, Engineering, and Mathematics) education. This project will examine the degree to which computations performed over ANS representations parallel true arithmetic computations. The development of the computational capacity of the ANS will be examined. Symbolic arithmetic computation obeys a set of functional rules. For example, the result of an arithmetic computation like 5+6 is a new, independent quantity that is just as precise as the quantities it was derived from, and which can be manipulated and used in further computations. These functional rules make symbolic arithmetic computation both powerful and flexible. This project aims to identify the functional rules of non-symbolic arithmetic with the ANS. In a series of experiments, four to six year-old children will be asked to solve non-symbolic problems with unknown addends (e.g., 5+__=11). This task requires children to perform arithmetic-like computation, holding two separate ANS representations in mind (e.g. approximately five and approximately 11) and performing a computation over them (e.g. subtracting approximately five from approximately 11) to derive a solution. Each experiment is aimed at examining different components of the functional rules of non-symbolic arithmetic, including the representational structure and precision of the solutions to ANS computations and the extent to which these solutions can be used in further computations. Additional measures of working memory capacity, symbolic math performance, and ANS representational precision are used to elucidate contributions of these cognitive systems to the computational capacity and development of the ANS. Data will be analyzed using a combination of traditional null hypothesis significance testing, Bayes factor analysis, and logistic regression. The project will therefore compliment what is known about the representational structure of the ANS by shedding light on its computational architecture and the development of this architecture in early childhood.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目调查儿童在学校接受正式数学训练之前在没有符号或正式符号的情况下进行算术计算的能力。近似数字系统(ANS)是一种从婴儿早期开始运行的认知系统,它允许人类在没有语言或符号的情况下近似量化一组物品。研究表明,ANS 可能支持算术运算,例如加法和减法,因此 ANS 可以充当学习形式数学的桥梁。然而,ANS 的算术能力以及这种能力如何发展尚不清楚。该项目通过一系列旨在评估幼儿在学校学习正式算术规则之前评估 ANS 的计算能力的实验,系统地检查了 ANS 的计算能力,从而填补了这一知识空白。该项目解决了有关 ANS 早期认知架构及其在算术计算中的作用的理论争论。该项目将确定教育工作者利用儿童的前符号数学直觉来帮助他们学习正规数学的潜在方法。这对 STEM(科学、技术、工程和数学)教育具有影响。该项目将检查 ANS 表示上执行的计算与真实算术计算并行的程度。 将检查 ANS 计算能力的发展。 符号算术计算遵循一组函数规则。例如,像 5+6 这样的算术计算的结果是一个新的、独立的量,它与派生它的量一样精确,并且可以在进一步的计算中进行操作和使用。这些函数规则使符号算术计算既强大又灵活。该项目旨在通过 ANS 识别非符号算术的功能规则。在一系列实验中,四到六岁的孩子将被要求解决具有未知加数的非符号问题(例如,5+__=11)。此任务要求孩子们执行类似算术的计算,记住两个单独的 ANS 表示(例如,大约 5 和大约 11)并对它们进行计算(例如,从大约 11 中减去大约 5)以得出解决方案。每个实验的目的都是检查非符号算术函数规则的不同组成部分,包括 ANS 计算解的表示结构和精度,以及这些解在进一步计算中的使用程度。工作记忆容量、符号数学性能和 ANS 表征精度的其他测量用于阐明这些认知系统对 ANS 计算能力和发展的贡献。将结合传统的零假设显着性检验、贝叶斯因子分析和逻辑回归来分析数据。因此,该项目将通过揭示其计算架构和该架构在幼儿期的发展来补充对 ANS 表征结构的了解。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of updating in working memory in 4–7-year-old children.
4-7 岁儿童工作记忆更新的发展。
  • DOI:
    10.1037/dev0001337
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Cheng, Chen;Kibbe, Melissa M.
  • 通讯作者:
    Kibbe, Melissa M.
Is Nonsymbolic Arithmetic Truly “Arithmetic”? Examining the Computational Capacity of the Approximate Number System in Young Children
非符号算术真的是“算术”吗?
  • DOI:
    10.1111/cogs.13299
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Cheng, Chen;Kibbe, Melissa M.
  • 通讯作者:
    Kibbe, Melissa M.
Children’s use of reasoning by exclusion to infer objects’ identities in working memory
儿童使用排除推理来推断工作记忆中的物体身份
Children’s use of Reasoning by Exclusion to Track Identities of Occluded Objects
儿童使用排除推理来追踪被遮挡物体的身份
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melissa Kibbe其他文献

Melissa Kibbe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melissa Kibbe', 18)}}的其他基金

Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
  • 批准号:
    2201961
  • 财政年份:
    2022
  • 资助金额:
    $ 57.86万
  • 项目类别:
    Standard Grant

相似国自然基金

面向认知计算的近似电路与算法跨层协同设计方法研究
  • 批准号:
    61871216
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于动态近似计算的近阈值数字电路设计技术研究
  • 批准号:
    61874023
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
面向移动终端的高能效视频显示处理算法与VLSI架构
  • 批准号:
    61774125
  • 批准年份:
    2017
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
基于尺度相关感知误差测度近似全局优化的数字图像半色调方法研究
  • 批准号:
    61302173
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
视觉显著协方差矩阵在视频近似拷贝检测中的应用研究
  • 批准号:
    61300205
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analytic Number Theory Motivated by Approximate Translation Invariance
由近似平移不变性推动的解析数论
  • 批准号:
    2001549
  • 财政年份:
    2020
  • 资助金额:
    $ 57.86万
  • 项目类别:
    Continuing Grant
Application of substitutive dynamical system to number theory
代换动力系统在数论中的应用
  • 批准号:
    20K03528
  • 财政年份:
    2020
  • 资助金额:
    $ 57.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of the role of Turner syndrome on approximate number sense
特纳综合征对近似数感作用的研究
  • 批准号:
    10267663
  • 财政年份:
    2018
  • 资助金额:
    $ 57.86万
  • 项目类别:
The structure of a tannakian category formed by equivalence classes of systems of linear inequalities over a number field and its application to diophantine approximation
由数域上线性不等式组的等价类形成的坦纳基范畴的结构及其在丢番图近似中的应用
  • 批准号:
    25400029
  • 财政年份:
    2013
  • 资助金额:
    $ 57.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and interaction of the approximate number system and quantifiers
近似数系和量词的发展和相互作用
  • 批准号:
    389076-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 57.86万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了