Excellence in Research - Collaborative: Hierarchical multilayered block copolymer dielectrics with z-gradient nanofiller for capacitive energy storage and gate dielectric

卓越研究 - 协作:具有 z 梯度纳米填料的分层多层嵌段共聚物电介质,用于电容储能和栅极电介质

基本信息

  • 批准号:
    1901127
  • 负责人:
  • 金额:
    $ 65.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This project is funded by the Historically Black Colleges and Universities Undergraduate Program - Excellence in Research program (HBCU-UP EiR). NON-TECHNICAL SUMMARY:There is much interest in use of lightweight polymer films for potential applications in flexible electronics related to portable energy storage devices, including batteries, capacitors, integrated solar cells and soft-actuation. In this regard, new approaches to high-energy density capacitive energy storage have recently demonstrated notable potential for high electrical energy storage using multilayered polymer films. Essentially the multiple interfaces within the multilayer act to sequentially block electrical breakdown of the dielectric polymer film that determines the upper limit of energy storage of the flexible capacitor. Recognizing that the breakdown follows an increasingly branched asymmetric pathway between electrodes (much like lightning bolts striking the earth), with the highest potential at the positive electrode, the work will systematically design and explore whether hybrid polymer multilayers (tetra-layered) can be structurally "reversed-engineered" with an asymmetry in polymer-layer breakdown properties that counters the asymmetric breakdown pathway. The approach aims to use self-assembling block copolymers for multilayer formation and combines it with the use of dispersed inorganic nanofillers to boost the energy storage capacity. Successful outcome can have a significant impact on the flexible electronics industry. This multidisciplinary team effort involves Howard University and Jackson State University (Historically Black College Universities) and University of Houston, a Minority Serving Institution, with significant amounts of intra and inter-institutional educational, training and research activities. The project will arrange a yearly rotational day-long conference on nanocomposites at each of the campuses to educate scientists, local teachers and local college bound students about the vast possibilities of nanotechnology. A trained cadre of talented nanotechnologists will be trained to address the challenges of the nation's workforce needs and produce peer reviewed scientific and technological publications that can be disseminated to the scientific community and broader society. The program aims to make web-accessible training protocols to prospective researchers in the field of nanoscience and nanoengineering.TECHNICAL SUMMARY;Fundamentally high energy densities and ultrafast charge-discharge rates (pulsed power) in solid state-flexible capacitors are of fundamental importance. The energy storage density is limited by the maximum electric field that can be applied across the electrodes. Current technologies for pulsed power applications utilize polymers as the dielectric of choice due to their high electrical resistance, low dielectric loss, self healing capability, formability and flexibility. However, these materials do not meet all of the requirements of the next-generation film dielectrics for high voltage and high energy density electronic devices. The planned work is based on the hypothesis that an anti-symmetric z-structured tetra-layered design of molecularly assembled capacitive elemental layers can precisely counter the asymmetry of the electrical treeing breakdown cascade from the positive to the negative electrode. The anti-symmetric film structure considers a tetra-layer with an extremely high breakdown prevention self-assembling multilayered block copolymer at the positive electrode where E-field strength is highest as per electrical treeing breakdown view-point. The subsequent layer is also a block copolymer structure with in-plane aligned nanosheets to forestall E-field cascade breakdown. The third layer is designed to contain high dielectric nanoparticles sequestered within a macroscopically ordered block copolymer layer, which also provides a strategy of gate dielectric for 2D semiconductor devices such as field-effect transistors and logic design with enhanced functionalities compared to the conventional dielectrics. Finally, a defect-free bottom polymer layer is used, which will prevent trickle-current to the negative electrode. A multidisciplinary team between Howard University and Jackson State University (Historically Black College Universities), and University of Houston, a Minority Serving Institution, will work towards training a cadre of talented nanotechnologists to face the challenges of the nation's workforce needs. Web modules on nanoscience and nanoengineering research for young and interested researchers and the general public will be made available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由历史悠久的黑人学院和大学本科生计划 - 卓越研究计划 (HBCU-UP EiR) 资助。非技术摘要:人们对轻质聚合物薄膜在与便携式储能设备相关的柔性电子产品中的潜在应用非常感兴趣,这些设备包括电池、电容器、集成太阳能电池和软驱动。在这方面,高能量密度电容储能的新方法最近已经证明了使用多层聚合物薄膜进行高电能存储的显着潜力。本质上,多层内的多个界面依次阻止介电聚合物薄膜的电击穿,这决定了柔性电容器能量存储的上限。认识到击穿遵循电极之间日益分支的不对称路径(很像闪电击中地球),正极电势最高,这项工作将系统地设计和探索混合聚合物多层(四层)是否可以在结构上“逆向工程”具有聚合物层击穿特性的不对称性,可对抗不对称击穿途径。该方法旨在使用自组装嵌段共聚物形成多层,并将其与分散无机纳米填料的使用相结合以提高能量存储容量。成功的结果会对柔性电子行业产生重大影响。这个多学科团队的努力涉及霍华德大学和杰克逊州立大学(历史上的黑人学院大学)以及休斯顿大学(少数族裔服务机构),开展了大量机构内和机构间的教育、培训和研究活动。该项目将每年在每个校区轮流安排一次为期一天的纳米复合材料会议,向科学家、当地教师和当地大学生介绍纳米技术的巨大可能性。训练有素的纳米技术专家骨干队伍将接受培训,以应对国家劳动力需求的挑战,并制作可向科学界和更广泛的社会传播的同行评审的科学和技术出版物。该计划旨在为纳米科学和纳米工程领域的未来研究人员提供可通过网络访问的培训协议。技术摘要;固态柔性电容器的基本高能量密度和超快充放电速率(脉冲功率)至关重要。能量存储密度受到可施加在电极上的最大电场的限制。当前的脉冲功率应用技术利用聚合物作为选择的电介质,因为它们具有高电阻、低介电损耗、自愈能力、可成形性和灵活性。然而,这些材料并不能满足下一代薄膜电介质对高电压和高能量密度电子器件的所有要求。计划的工作基于这样的假设:分子组装的电容元素层的反对称 z 结构四层设计可以精确地抵消从正极到负极的电树击穿级联的不对称性。反对称薄膜结构考虑了在正极处具有极高击穿防护自组装多层嵌段共聚物的四层,根据电树击穿观点,此处电场强度最高。后续层也是嵌段共聚物结构,具有面内排列的纳米片,以防止电场级联击穿。第三层设计为包含隔离在宏观有序嵌段共聚物层内的高介电纳米颗粒,这也为场效应晶体管和逻辑设计等二维半导体器件提供了一种栅极电介质策略,与传统电介质相比具有增强的功能。最后,使用无缺陷的底部聚合物层,这将防止滴流电流流向负极。霍华德大学和杰克逊州立大学(历史上的黑人学院大学)以及休斯顿大学(少数族裔服务机构)之间的多学科团队将致力于培训一批有才华的纳米技术专家,以应对国家劳动力需求的挑战。将为感兴趣的年轻研究人员和公众提供有关纳米科学和纳米工程研究的网络模块。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dharmaraj Raghavan其他文献

Dharmaraj Raghavan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337028
  • 财政年份:
    2024
  • 资助金额:
    $ 65.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337027
  • 财政年份:
    2024
  • 资助金额:
    $ 65.15万
  • 项目类别:
    Continuing Grant
Convergent Engineering and Biomolecular Science
融合工程与生物分子科学
  • 批准号:
    10557613
  • 财政年份:
    2023
  • 资助金额:
    $ 65.15万
  • 项目类别:
Admin Core
管理核心
  • 批准号:
    10885850
  • 财政年份:
    2023
  • 资助金额:
    $ 65.15万
  • 项目类别:
Oklahoma Center for Respiratory and Infectious Diseases
俄克拉荷马州呼吸和传染病中心
  • 批准号:
    10628212
  • 财政年份:
    2023
  • 资助金额:
    $ 65.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了