Banach Spaces with a Focus on Sobolev-Style Spaces, Frame Theory, and Quantum Graphs

Banach 空间,重点关注 Sobolev 式空间、框架理论和量子图

基本信息

项目摘要

Banach spaces are a useful and powerful abstract framework to understand real-world data such as images, sound, or experimental results, and they do so in at least two different levels. First, for a particular instance of data, a Banach space provides a way to rigorously quantify various characteristics of that data. At a second level of abstraction, studying the structure of the whole space consisting of all possible instances of data has been crucial to the solution of certain problems, such as the prediction of the future behavior of the system being modeled. For this project, the spaces under consideration come from both signal processing (which deals with the problem of storing information about an object by considering it as a sum of simpler ones) and Quantum Information Science (which studies a mathematical framework for communications where one can encode information not as a string of 0s and 1s as today's computers do, but rather in the state of a quantum-mechanical system). The PI seeks to advance the knowledge of some spaces coming from the two aforementioned practical settings -- as well as related analytical considerations -- via fundamental research, including research conducted by undergraduate students under the PI's supervision. In addition, through his outreach and mentoring of postdocs, the PI will contribute to growing and diversifying the group of students and researchers in STEM fields.The project is divided into three parts. The first is inspired by an uncertainty principle in time-frequency analysis, which is related to Sobolev-style inequalities and spaces associated to finite graphs endowed with an extra "magnetic" structure. The name comes from the fact that the presence of a magnetic potential in some quantum-mechanical models of bonds between atoms is modeled not just with a graph, but also with an additional assignment of a complex number of modulus one to each edge of the graph. The second part of the project seeks to generalize the theory of frames, i.e. overcomplete bases, from the Hilbert space setting to the general Banach space one, where we no longer enjoy the advantages of having a large group of symmetries. Significant work has already been done in this direction, but mostly in the infinite-dimensional setting, and the PI will continue developing the nascent theory of frames on finite-dimensional Banach spaces. The third part is focused on quantum graphs, which are linear spaces of complex-valued matrices that come from Quantum Information Theory and can be considered as generalizations of classical combinatorial graphs. The PI will investigate quantum versions of a variety of classical results in graph theory, particularly those related to the aforementioned Sobolev-style inequalities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
巴拿赫空间是一个有用且强大的抽象框架,用于理解现实世界的数据,例如图像、声音或实验结果,并且它们至少在两个不同的层面上这样做。首先,对于特定的数据实例,Banach 空间提供了一种严格量化该数据的各种特征的方法。在第二个抽象层次上,研究由所有可能的数据实例组成的整个空间的结构对于解决某些问题至关重要,例如预测正在建模的系统的未来行为。对于这个项目,所考虑的空间来自信号处理(通过将对象视为更简单的信息的总和来处理存储有关对象的信息的问题)和量子信息科学(研究一种通信的数学框架,其中人们可以不像今天的计算机那样将信息编码为一串 0 和 1,而是以量子力学系统的状态进行编码)。 PI 寻求通过基础研究(包括由 PI 监督下的本科生进行的研究)来增进对来自上述两个实际环境的某些空间的了解以及相关的分析考虑。此外,通过对博士后的推广和指导,PI 将有助于 STEM 领域的学生和研究人员群体的发展和多样化。该项目分为三个部分。第一个受到时频分析中不确定性原理的启发,该原理与索博列夫式不等式和与赋予额外“磁性”结构的有限图相关的空间有关。这个名字来源于这样一个事实:在一些原子间键的量子力学模型中,磁势的存在不仅用图来建模,而且还用模数 1 的复数附加分配给图的每个边。该项目的第二部分旨在概括框架理论,即超完备基,从希尔伯特空间设置到一般巴拿赫空间,我们不再享受拥有一大群对称性的优势。在这个方向上已经做了重要的工作,但主要是在无限维设置中,PI 将继续发展有限维 Banach 空间上的新兴框架理论。第三部分重点关注量子图,它是来自量子信息论的复值矩阵的线性空间,可以被视为经典组合图的推广。 PI 将研究图论中各种经典结果的量子版本,特别是与上述索博列夫式不等式相关的结果。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Completely coarse maps are ${\mathbb {R}}$-linear
完全粗略的映射是 ${mathbb {R}}$-线性的
Connectivity for quantum graphs
量子图的连通性
  • DOI:
    10.1016/j.laa.2020.08.020
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Chávez-Domínguez, Javier Alejandro;Swift, Andrew T.
  • 通讯作者:
    Swift, Andrew T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Javier Chavez-Dominguez其他文献

Javier Chavez-Dominguez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Javier Chavez-Dominguez', 18)}}的其他基金

Quantum Perspectives in Banach and Metric Spaces
Banach 和度量空间中的量子视角
  • 批准号:
    2247374
  • 财政年份:
    2023
  • 资助金额:
    $ 15.43万
  • 项目类别:
    Standard Grant
Nonlinear and noncommutative perspectives on Banach space theory
Banach 空间理论的非线性和非交换视角
  • 批准号:
    1400588
  • 财政年份:
    2014
  • 资助金额:
    $ 15.43万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Geodesign的重点生态功能区“三生”空间智慧优化系统研究:框架、模型与实证
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
重点生态功能区旅游地人居空间多功能转型:特征、机制与调控
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
中国古代南北对峙区域军事城镇的防御机制与空间形态特征研究——以川陕、荆襄与两淮战区为重点
  • 批准号:
    51678458
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
Focus+Context支持的群集三维对象变形可视化
  • 批准号:
    41671381
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
生态流空间通达性视角下财政转移支付对农户生计作用机制与调控——以国家重点生态功能区为例
  • 批准号:
    41601614
  • 批准年份:
    2016
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Expanding "Safe Spaces 4 Sexual Health," a Mobile Van HIV/STI Testing and Care Linkage Strategy, for Black MSM in online spaces
为在线空间中的黑人 MSM 扩展“安全空间 4 性健康”,这是一项移动货车 HIV/STI 检测和护理联动策略
  • 批准号:
    10619057
  • 财政年份:
    2023
  • 资助金额:
    $ 15.43万
  • 项目类别:
Study on Modernization and Transformation Process of Garden Spaces: Focus on Gardens Depicted in Site Plan Drawings of Samurai Residence
园林空间现代化转型过程研究——以武士宅邸平面图描绘的园林为中心
  • 批准号:
    23K19165
  • 财政年份:
    2023
  • 资助金额:
    $ 15.43万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Study on twistor spaces
扭量空间的研究
  • 批准号:
    16H03932
  • 财政年份:
    2016
  • 资助金额:
    $ 15.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Safe Spaces: Fostering Equitable Partnership to Prevent Violence
安全空间:促进平等伙伴关系以防止暴力
  • 批准号:
    8757125
  • 财政年份:
    2014
  • 资助金额:
    $ 15.43万
  • 项目类别:
Transforming tourism spaces and tourists in the era of globalization-A study on inbound tourism to Japan with a focus on 'Japanization'
全球化时代旅游空间与游客的变革——以“日本化”为中心的日本入境旅游研究
  • 批准号:
    26360091
  • 财政年份:
    2014
  • 资助金额:
    $ 15.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了