BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data

BigData:IA:协作研究:TIMES:时空数据张量分解平台

基本信息

  • 批准号:
    1838042
  • 负责人:
  • 金额:
    $ 77.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Spatio-temporal analyses can enable many discoveries including reducing traffic congestion, identifying hotspot areas to deploy mobile clinics, and urban planning. Unfortunately, the data poses many computational challenges. Standard assumptions in machine learning and data mining algorithms are violated by the complex nature of spatio-temporal data. These include spatial and temporal correlation of observations, dynamic and abrupt changes in observations, variability in measurements with respect to length and frequency, and multi-sourced data that spans multiple sources of information. In recognition of these challenges, various efforts have been undertaken to develop specialized spatiotemporal models. Yet, to date, these algorithms are predominately designed to analyze small- to medium-sized datasets. The goal of this project is to develop a comprehensive computational tensor platform to perform automated, data-driven discovery from spatio-temporal data across a broad range of applications. The project also includes a set of integrated educational activities such as a Massive Open Online Course that covers cross-disciplinary topics at the confluence of computer science and geospatial applications, annual spatio-temporal data challenges and hackathons, and an annual event at the Atlanta Science Festival to create public awareness and encourage participation by women and minorities.The project will contain algorithmic innovations that reflect appropriate assumptions of spatio-temporal data without sacrificing real-time performance, computational scalability, and cross-site learning even under privacy constraints. The proposed platform will generalize tensor modeling to encompass the complex nature of spatio-temporal data including time irregularity, spatiotemporal correlations, and evolving distributions. It will enable the integration of multi-sourced data from heterogeneous sources to yield robust and cohesive learned patterns. The novel algorithms will also facilitate learning in decentralized settings while preserving privacy. The computational platform will contain interchangeable modules that can adapt to new spatio-temporal settings and incorporate additional contextual information. The accompanying suite of algorithms will enable predictive learning, pattern mining, and change detection from large-sized spatio-temporal data. The broad applicability of the project will be demonstrated on a diverse range of data including urban transportation services, real estate market transactions, and population health. The algorithmic innovations introduced can be used to scale other machine learning models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
时空分析可以实现许多发现,包括减少交通拥堵、识别热点区域以部署移动诊所以及城市规划。不幸的是,这些数据带来了许多计算挑战。 时空数据的复杂性违反了机器学习和数据挖掘算法中的标准假设。 这些包括观测值的空间和时间相关性、观测值的动态和突变、测量值在长度和频率方面的可变性,以及跨越多个信息源的多源数据。认识到这些挑战,人们做出了各种努力来开发专门的时空模型。然而,迄今为止,这些算法主要设计用于分析中小型数据集。该项目的目标是开发一个全面的计算张量平台,以跨广泛的应用程序从时空数据中执行自动化、数据驱动的发现。该项目还包括一系列综合教育活动,例如涵盖计算机科学和地理空间应用交叉学科主题的大规模开放在线课程、年度时空数据挑战和黑客马拉松,以及亚特兰大科学中心的年度活动旨在提高公众意识并鼓励妇女和少数族裔参与的节日。该项目将包含算法创新,反映时空数据的适当假设,而不会牺牲实时性能、计算可扩展性和跨站点学习(即使在隐私情况下)限制。所提出的平台将推广张量建模,以涵盖时空数据的复杂性质,包括时间不规则性、时空相关性和不断变化的分布。它将能够集成来自异构源的多源数据,以产生强大且有凝聚力的学习模式。新颖的算法还将促进去中心化环境中的学习,同时保护隐私。该计算平台将包含可互换的模块,可以适应新的时空设置并包含额外的上下文信息。 随附的算法套件将支持从大型时空数据进行预测学习、模式挖掘和变化检测。 该项目的广泛适用性将在城市交通服务、房地产市场交易和人口健康等多种数据上得到证明。引入的算法创新可用于扩展其他机器学习模型。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MTC: Multiresolution Tensor Completion from Partial and Coarse Observations
MTC:部分和粗略观测的多分辨率张量补全
TASTE: temporal and static tensor factorization for phenotyping electronic health records
TASTE:用于表型电子健康记录的时间和静态张量分解
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jimeng Sun其他文献

AIM-HI: A framework for request routing in large-scale IT global service delivery
AIM-HI:大规模 IT 全球服务交付中的请求路由框架
  • DOI:
    10.1147/jrd.2009.5429032
  • 发表时间:
    2009-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asheq Khan;H. Jamjoom;Jimeng Sun
  • 通讯作者:
    Jimeng Sun
Causal Regularization
因果正则化
  • DOI:
  • 发表时间:
    2017-02-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. T. Bahadori;Krzysztof Chalupka;E. Choi;Robert Chen;W. Stewart;Jimeng Sun
  • 通讯作者:
    Jimeng Sun
Making Pre-trained Language Models Great on Tabular Prediction
使预训练语言模型在表格预测方面发挥出色作用
  • DOI:
    10.48550/arxiv.2403.01841
  • 发表时间:
    2024-03-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiahuan Yan;Bo Zheng;Hongxia Xu;Yiheng Zhu;D. Chen;Jimeng Sun;Jian Wu;Jintai Chen
  • 通讯作者:
    Jintai Chen
TransTab: Learning Transferable Tabular Transformers Across Tables
TransTab:学习跨表的可转移表格转换器
  • DOI:
    10.48550/arxiv.2205.09328
  • 发表时间:
    2022-05-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zifeng Wang;Jimeng Sun
  • 通讯作者:
    Jimeng Sun
STEAM: Self-Supervised Taxonomy Expansion with Mini-Paths
STEAM:使用迷你路径进行自我监督的分类法扩展

Jimeng Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jimeng Sun', 18)}}的其他基金

Collaborative Research: SCH: Fair Federated Representation Learning for Breast Cancer Risk Scoring
合作研究:SCH:乳腺癌风险评分的公平联合表示学习
  • 批准号:
    2205289
  • 财政年份:
    2022
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Fair Federated Representation Learning for Breast Cancer Risk Scoring
合作研究:SCH:乳腺癌风险评分的公平联合表示学习
  • 批准号:
    2205289
  • 财政年份:
    2022
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
SCH:INT: Collaborative Research: Deep Sense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:深度感知:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2014438
  • 财政年份:
    2020
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
I-Corps: Brain Health Monitoring via Phenotyping Electroencephalogram Data
I-Corps:通过表型脑电图数据监测大脑健康
  • 批准号:
    2034497
  • 财政年份:
    2020
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Integrated Scalable Platform for Privacy-aware Collaborative Learning and Inference
协作研究:PPoSS:规划:用于隐私意识协作学习和推理的集成可扩展平台
  • 批准号:
    2028839
  • 财政年份:
    2020
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
  • 批准号:
    2034479
  • 财政年份:
    2020
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
I-Corps: Brain Health Monitoring via Phenotyping Electroencephalogram Data
I-Corps:通过表型脑电图数据监测大脑健康
  • 批准号:
    1839478
  • 财政年份:
    2018
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant

相似国自然基金

甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大豆GmCPSF73-Ia调控侧根发育的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
核因子IA通过调节破骨细胞分化影响骨稳态和骨量的作用及其机制研究
  • 批准号:
    82072389
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
  • 批准号:
    2034479
  • 财政年份:
    2020
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838024
  • 财政年份:
    2019
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 77.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了