Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
基本信息
- 批准号:1835661
- 负责人:
- 金额:$ 40.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops a real-time processing system capable of handling a large mix of sensor observations. The focus of this system is automation of the detection of natural hazard events using machine learning, as the events are occurring. A four-organization collaboration (UNAVCO, University of Colorado, University of Oregon, and Rutgers University) develops a data framework for generalized real-time streaming analytics and machine learning for geoscience and hazards research. This work will support rapid analysis and understanding of data associated with hazardous events (earthquakes, volcanic eruptions, tsunamis). This project uses a collaboration between computer scientists and geoscientists to develop a data framework for generalized real-time streaming analytics and machine learning for geoscience and hazards research. It focuses on the aggregation and integration of a large number of data streams into a coherent system that supports analysis of the data streams in real-time. The framework will offer machine-learning-based tools designed to detect signals of events, such as earthquakes and tsunamis, that might only be detectable when looking at a broad selection of observational inputs. The architecture sets up a fast data pipeline by combining a group of open source components that make big data applications viable and easier to develop. Data sources for the project draw primarily upon the 1500+ sensors from the EarthScope networks currently managed by UNAVCO and the Incorporated Research Institutions for Seismology (IRIS), as well as the Ocean Observatories Initiative (OOI) cabled array data managed by Rutgers University. Machine learning (ML) algorithms will be researched and applied to the tsunami and earthquake use cases. Initially, the project plans to employ an advanced convolutional neural network method in a multi-data environment. The method has only been applied to seismic waveforms, so the project will explore extending the method to a multi-data environment. The approach is expected to be extensible beyond detection and characterization of earthquakes to include the onset of other geophysical signals such as slow-slip events or magmatic intrusion, expanding the potential for new scientific discoveries. The framework is applied to use cases in the Cascadia subduction zone and Yellowstone: these locations combine the expertise of the science team with locations where EarthScope and OOI have the greatest concentration of instruments. The architecture will be transportable and scalable, running in a Docker environment on laptops, local clusters and the cloud. Integral to the project will be development, documentation and training using collaborative online resources such as GitLab and Jupyter Notebooks, and utilizing NSF XSEDE resources to make larger datasets and computational resources more widely available.This award by the NSF Office of Advanced Cyberinfrastructure is jointly supported by the Cross-Cutting Program and Division of Earth Sciences within the NSF Directorate for Geosciences, the Big Data Science and Engineering Program within the Directorate for Computer and Information Science and Engineering, and the EarthCube Program jointly sponsored by the NSF Directorate for Geosciences and the Office of Advanced Cyberinfrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了一个实时处理系统,能够处理大量传感器观测结果。该系统的重点是在自然灾害事件发生时使用机器学习自动检测自然灾害事件。 四家组织(UNAVCO、科罗拉多大学、俄勒冈大学和罗格斯大学)合作开发了一个数据框架,用于地球科学和灾害研究的通用实时流分析和机器学习。 这项工作将支持快速分析和理解与危险事件(地震、火山爆发、海啸)相关的数据。 该项目利用计算机科学家和地球科学家之间的合作,开发一个数据框架,用于地球科学和灾害研究的通用实时流分析和机器学习。 它专注于将大量数据流聚合和集成到一个支持实时数据流分析的连贯系统中。该框架将提供基于机器学习的工具,旨在检测地震和海啸等事件信号,这些信号可能只有在广泛选择观测输入时才能检测到。 该架构通过组合一组开源组件来建立快速数据管道,使大数据应用程序可行且更易于开发。该项目的数据源主要利用来自目前由 UNAVCO 和地震学联合研究机构 (IRIS) 管理的 EarthScope 网络的 1500 多个传感器,以及由罗格斯大学管理的海洋观测计划 (OOI) 有线阵列数据。 将研究机器学习(ML)算法并将其应用于海啸和地震用例。 最初,该项目计划在多数据环境中采用先进的卷积神经网络方法。 该方法仅应用于地震波形,因此该项目将探索将该方法扩展到多数据环境。 该方法预计可以扩展到地震的检测和表征之外,包括其他地球物理信号的出现,例如慢滑事件或岩浆侵入,从而扩大新科学发现的潜力。 该框架适用于卡斯卡迪亚俯冲带和黄石公园的用例:这些地点将科学团队的专业知识与 EarthScope 和 OOI 仪器最集中的地点结合起来。 该架构将具有可移植性和可扩展性,可在笔记本电脑、本地集群和云上的 Docker 环境中运行。 该项目的组成部分将是使用 GitLab 和 Jupyter Notebooks 等协作在线资源进行开发、文档和培训,并利用 NSF XSEDE 资源来更广泛地提供更大的数据集和计算资源。该奖项由 NSF 高级网络基础设施办公室共同支持由美国国家科学基金会地球科学理事会的跨领域项目和地球科学部、计算机和信息科学与工程理事会的大数据科学与工程项目以及由美国国家科学基金会联合发起的地球立方项目NSF 地球科学理事会和先进网络基础设施办公室。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real‐Time Fault Tracking and Ground Motion Prediction for Large Earthquakes With HR‐GNSS and Deep Learning
利用 HR-GNSS 和深度学习对大地震进行实时故障跟踪和地面运动预测
- DOI:10.1029/2023jb027255
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Lin, Jiun‐Ting;Melgar, Diego;Sahakian, Valerie J.;Thomas, Amanda M.;Searcy, Jacob
- 通讯作者:Searcy, Jacob
Can Stochastic Slip Rupture Modeling Produce Realistic M 9+ Events?
随机滑动破裂建模能否产生真实的 M 9 事件?
- DOI:10.1029/2022jb025716
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Small, David T.;Melgar, Diego
- 通讯作者:Melgar, Diego
Deep Coseismic Slip in the Cascadia Megathrust Can Be Consistent With Coastal Subsidence
卡斯卡迪亚巨型逆冲断层中的深层同震滑动可能与海岸沉降一致
- DOI:10.1029/2021gl097404
- 发表时间:2022-01
- 期刊:
- 影响因子:5.2
- 作者:Melgar, Diego;Sahakian, Valerie J.;Thomas, Amanda M.
- 通讯作者:Thomas, Amanda M.
Generation and Validation of Broadband Synthetic P Waves in Semistochastic Models of Large Earthquakes
- DOI:10.1785/0120200049
- 发表时间:2020-08-01
- 期刊:
- 影响因子:3
- 作者:D. Goldberg;D. Melgar
- 通讯作者:D. Melgar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diego Melgar其他文献
Detection of Hidden Low-Frequency Earthquakes in Southern 1 Vancouver Island with Deep Learning
利用深度学习检测温哥华岛南部隐藏的低频地震
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jiun;Amanda M. Thomas;Loïc Bachelot;D. Toomey;Jacob Searcy;Diego Melgar - 通讯作者:
Diego Melgar
Rapid Estimation of Single-Station Earthquake Magnitudes with Machine Learning on a Global Scale
利用机器学习在全球范围内快速估计单站地震震级
- DOI:
10.1785/0120230171 - 发表时间:
2024-01-02 - 期刊:
- 影响因子:3
- 作者:
S. Dybing;W. Yeck;Hank M. Cole;Diego Melgar - 通讯作者:
Diego Melgar
Strong‐Motion Broadband Displacements From Collocated Ocean‐Bottom Pressure Gauges and Seismometers
来自并置海洋的强运动宽带位移——海底压力计和地震计
- DOI:
10.1029/2023gl107776 - 发表时间:
2024-06-06 - 期刊:
- 影响因子:5.2
- 作者:
A. Mizutani;Diego Melgar;Kiyoshi Yomogida - 通讯作者:
Kiyoshi Yomogida
The value of real‐time GNSS to earthquake early warning
实时GNSS对地震预警的价值
- DOI:
10.1002/2017gl074502 - 发表时间:
2017-08-28 - 期刊:
- 影响因子:5.2
- 作者:
C. J. Ruhl;Diego Melgar;R. Grapenthin;Richard M. Allen - 通讯作者:
Richard M. Allen
Characterizing High Rate GNSS Velocity Noise for Synthesizing a GNSS Strong Motion Learning Catalog
- DOI:
10.26443/seismica.v2i2.978 - 发表时间:
2023-10-05 - 期刊:
- 影响因子:0
- 作者:
Tim Dittmann;Jade Morton;B. Crowell;Diego Melgar;Jensen DeGr;e;e;David Mencin - 通讯作者:
David Mencin
Diego Melgar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diego Melgar', 18)}}的其他基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325310 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Center Operations: Cascadia Region Earthquake Science Center (CRESCENT)
中心运营:卡斯卡迪亚地区地震科学中心(CRESCENT)
- 批准号:
2225286 - 财政年份:2023
- 资助金额:
$ 40.55万 - 项目类别:
Cooperative Agreement
相似国自然基金
基于共价有机框架薄膜的气体传感器及其敏感机理研究
- 批准号:62371299
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
表面手性有机框架的设计构筑及手性调控研究
- 批准号:22372030
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
有机小分子插入共价有机框架调控电化学发光性能及对铀的分析新方法研究
- 批准号:22376023
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全球大气谱模式动力框架耦合有限体积方法研究
- 批准号:42375155
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
铁系金属有机框架材料的活性位结构调控与双效氧电催化机制研究
- 批准号:22309180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342748 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant