CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
基本信息
- 批准号:1854321
- 负责人:
- 金额:$ 5.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-19 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the next few decades, autonomous vehicles will become an integral part of the traffic flow on highways. However, they will constitute only a small fraction of all vehicles on the road. This research develops technologies to employ autonomous vehicles already in the stream to improve traffic flow of human-controlled vehicles. The goal is to mitigate undesirable jamming, traffic waves, and to ultimately reduce the fuel consumption. Contemporary control of traffic flow, such as ramp metering and variable speed limits, is largely limited to local and highly aggregate approaches. This research represents a step towards global control of traffic using a few autonomous vehicles, and it provides the mathematical, computational, and engineering structure to address and employ these new connections. Even if autonomous vehicles can provide only a small percentage reduction in fuel consumption, this will have a tremendous economic and environmental impact due to the heavy dependence of the transportation system on non-renewable fuels. The project is highly collaborative and interdisciplinary, involving personnel from different disciplines in engineering and mathematics. It includes the training of PhD students and a postdoctoral researcher, and outreach activities to disseminate traffic research to the broader public. This project develops new models, computational methods, software tools, and engineering solutions to employ autonomous vehicles to detect and mitigate traffic events that adversely affect fuel consumption and congestion. The approach is to combine the data measured by autonomous vehicles in the traffic flow, as well as other traffic data, with appropriate macroscopic traffic models to detect and predict congestion trends and events. Based on this information, the loop is closed by carefully following prescribed velocity controllers that are demonstrated to reduce congestion. These controllers require detection and response times that are beyond the limit of a human's ability. The choice of the best control strategy is determined via optimization approaches applied to the multiscale traffic model and suitable fuel consumption estimation. The communication between the autonomous vehicles, combined with the computational and control tasks on each individual vehicle, require a cyber-physical approach to the problem. This research considers new types of traffic models (micro-macro models, network approaches for higher-order models), new control algorithms for traffic flow regulation, and new sensing and control paradigms that are enabled by a small number of controllable systems available in a flow.
在接下来的几十年中,自动驾驶汽车将成为高速公路交通流量的组成部分。但是,它们仅构成道路上所有车辆的一小部分。这项研究开发了已经在溪流中采用自动驾驶汽车来改善人类控制车辆的交通流量的技术。目的是减轻不良干扰,交通波,并最终减少燃油消耗。当代对交通流量的控制,例如坡道计量和可变速度限制,在很大程度上仅限于本地和高度聚集的方法。这项研究代表了使用一些自动驾驶汽车迈向全球流量控制的一步,它提供了数学,计算和工程结构,以解决和采用这些新连接。即使自动驾驶汽车只能提供少量减少燃料消耗的比例,由于运输系统对不可再生燃料的严重依赖,这将产生巨大的经济和环境影响。该项目是高度协作和跨学科的,涉及工程和数学不同学科的人员。它包括对博士生和博士后研究人员的培训,以及向更广泛的公众传播交通研究的活动。该项目开发了新的模型,计算方法,软件工具和工程解决方案,以使用自动驾驶汽车来检测和减轻对燃料消耗和拥塞的不利影响的交通事件。该方法是将通过自动驾驶汽车以及其他交通数据中的自动驾驶汽车测量的数据与适当的宏观交通模型相结合,以检测和预测拥塞趋势和事件。基于此信息,循环通过经过仔细的规定速度控制器进行了仔细的关闭,这些速度控制器被证明可以减少充血。这些控制器需要超出人类能力极限的检测和响应时间。最佳控制策略的选择是通过应用于多尺度交通模型和合适的燃油消耗估算的优化方法来确定的。自动驾驶汽车之间的通信以及每个车辆上的计算和控制任务都需要解决问题的网络物理方法。这项研究考虑了新型的流量模型(微型麦克罗模型,高阶模型的网络方法),用于交通流量调节的新的控制算法以及由流量中可用的少量可控系统启用的新的感应和控制范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Work其他文献
Libpanda Apps: Managing the Deployment and Reuse of a Cyber-Physical System
Libpanda 应用程序:管理网络物理系统的部署和重用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matt Bunting;Matthew Nice;Alex A. Richardson;Jonathan Sprinkle;Daniel Work - 通讯作者:
Daniel Work
Daniel Work的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Work', 18)}}的其他基金
PFI-TT: Local Sensing on Automated Vehicles
PFI-TT:自动驾驶车辆的本地传感
- 批准号:
2329820 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Continuing Grant
CPS: TTP Option: Medium: Coordinating Actors via Learning for Lagrangian Systems (CALLS)
CPS:TTP 选项:中:通过拉格朗日系统学习协调参与者 (CALLS)
- 批准号:
2135579 - 财政年份:2022
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
Workshop on Control for Networked Transportation Systems, To Be Held At The American Control Conference, July 8-9, 2019, in Philadelphia, PA.
网络运输系统控制研讨会将于 2019 年 7 月 8 日至 9 日在宾夕法尼亚州费城举行的美国控制会议上举行。
- 批准号:
1932711 - 财政年份:2019
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
CPS: TTP Option: Medium: Collaborative Research: Smoothing Traffic via Energy-efficient Autonomous Driving (STEAD)
CPS:TTP 选项:中:协作研究:通过节能自动驾驶 (STEAD) 平滑交通
- 批准号:
1837652 - 财政年份:2019
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
CAREER: Modeling and Estimation Methods for Complex Traffic
职业:复杂交通的建模和估计方法
- 批准号:
1853913 - 财政年份:2018
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
- 批准号:
1446702 - 财政年份:2015
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
CAREER: Modeling and Estimation Methods for Complex Traffic
职业:复杂交通的建模和估计方法
- 批准号:
1351717 - 财政年份:2014
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
RAPID: Monitoring the Response of Transportation Cyber Physical Systems in the Wake of Hurricane Sandy
RAPID:监测飓风桑迪后交通网络物理系统的响应
- 批准号:
1308842 - 财政年份:2013
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
相似国自然基金
多源环境能量协同作用的微功率高效整流机制研究
- 批准号:62301348
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SiO2@LDH核壳晶种协同提升海工大掺量固废混凝土早期强度与抗氯离子渗透性的作用机制
- 批准号:52371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
水中放电产生微纳气泡的空化形成机制、强化传质作用和协同生物效应
- 批准号:52377160
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于微区异构基元有序化精准构筑提高交通铝合金形/性的协同作用机制
- 批准号:52371016
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
香精油微胶囊黏流态内芯构建及氢键作用协同粘度增强实现超长留香机制研究
- 批准号:22368030
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
CPS:Medium:Collaborative Research: High-Fidelity High-Resolution and Secure Monitoring and Control of Future Grids: a synergy of AI, data science, and hardware security
CPS:中:协作研究:未来电网的高保真高分辨率和安全监控:人工智能、数据科学和硬件安全的协同作用
- 批准号:
1932196 - 财政年份:2019
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
CPS:Medium:Collaborative Research:High-Fidelity High-Resolution and Secure Monitoring and Control of Future Grids: a synergy of AI, data science, and hardware security
CPS:中:协作研究:未来电网的高保真高分辨率和安全监控:人工智能、数据科学和硬件安全的协同作用
- 批准号:
1932501 - 财政年份:2019
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
- 批准号:
1936599 - 财政年份:2019
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: DEUS: Distributed, Efficient, Ubiquitous and Secure Data Delivery Using Autonomous Underwater Vehicles
CPS:协同:协作研究:DEUS:使用自主水下航行器进行分布式、高效、无处不在和安全的数据传输
- 批准号:
1853257 - 财政年份:2018
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
- 批准号:
1645578 - 财政年份:2018
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant