I-Corps: Residential Energy Management and Analytics

I-Corps:住宅能源管理和分析

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project derives from its promise to positively affect not only consumers, but also enhance efficiencies in the electric energy marketplace as a whole. The basic functionality of matching users to optimal electric plans will result in both higher consumer satisfaction, and result in Retail Electric Providers (REPs) offering more competitive rate packages. Identifying the actual usage profile of appliances over time and providing actionable information to consumers will enable consumers to take informed decisions on appliance purchases, as well as manufacturers to optimize designs with real-world inputs. The platform will enable the solution of system-wide problems faced by utility companies like peak period demand surges to be countered through demand response initiatives such as incentivizing customers to modify their usage patterns to smoothen the load curve. Each function of the proposed system is geared toward addressing a specific source of friction in the electric energy marketplace, and consequently also possesses commercial potential. Thus, the overall economic impact will be on consumers, REPs, utility companies and appliance manufactures, while promoting a greater knowledge and engagement among the electricity consumers.This I-Corps project explores the value of creating a bundled energy management system aimed at residential users. The system uses machine-learning-based analytics of the customer's daily, weekly, monthly, and seasonal energy usage trends to offer potential savings through (1) recommending the best retail energy service provider plan matching the customer's usage patterns, (2) incentivizing customers to enable full integration with smart home devices, including smart thermostats, (3) identifying and predicting the electricity consumption of different appliances and providing actionable information on their optimal usage and maintenance, and (4) services to allow customers to navigate through the process of switching plans. A smartphone app available for the iOS and Android platforms forms the customer interface to the system. The key novelties of this project lie in the development and integration of machine learning tools and behavioral economics ideas into the domain of residential energy management. The project is founded on research into the design, development and validation of such tools in contexts such as predicting residential energy usage over time, disaggregating usage on a per-appliance basis, and experimentation on how best to motivate users to engage in energy usage behavior that induces efficient grid operation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目的更广泛影响/商业潜力源于其承诺不仅对消费者产生积极影响,而且还提高整个电力能源市场的效率。将用户与最佳电力计划相匹配的基本功能将提高消费者满意度,并导致零售电力提供商 (REP) 提供更具竞争力的费率套餐。 随着时间的推移,识别电器的实际使用情况并向消费者提供可操作的信息将使消费者能够就电器购买做出明智的决定,并使制造商能够根据现实世界的输入来优化设计。 该平台将能够解决公用事业公司面临的系统范围的问题,例如通过需求响应举措来应对高峰期需求激增,例如激励客户修改其使用模式以平滑负载曲线。 所提议系统的每个功能都旨在解决电能市场中的特定摩擦源,因此也具有商业潜力。 因此,整体经济影响将针对消费者、REP、公用事业公司和电器制造商,同时促进电力消费者的更多知识和参与。该 I-Corps 项目探讨了创建针对住宅用户的捆绑式能源管理系统的价值。 该系统使用基于机器学习的方式对客户的每日、每周、每月和季节性能源使用趋势进行分析,通过以下方式提供潜在的节省:(1) 推荐符合客户使用模式的最佳零售能源服务提供商计划,(2) 激励客户实现与智能家居设备(包括智能恒温器)的全面集成,(3) 识别和预测不同电器的用电量,并提供有关其最佳使用和维护的可操作信息,以及 (4) 允许客户浏览整个过程的服务切换计划。适用于 iOS 和 Android 平台的智能手机应用程序构成了系统的客户界面。 该项目的主要新颖之处在于机器学习工具和行为经济学思想的开发和集成到住宅能源管理领域。 该项目的基础是对此类工具的设计、开发和验证的研究,例如预测住宅能源使用情况随时间的推移、按每台电器分类使用情况以及如何最好地激励用户参与能源使用行为的实验该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivas Shakkottai其他文献

Opportunities for Network Coding: To Wait or Not to Wait
网络编码的机会:等待还是不等待
  • DOI:
    10.1109/tnet.2014.2347339
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu;Navid Abedini;Natarajan Gautam;Alexander Sprintson;Srinivas Shakkottai
  • 通讯作者:
    Srinivas Shakkottai

Srinivas Shakkottai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivas Shakkottai', 18)}}的其他基金

Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
  • 批准号:
    2312978
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Empowering Prosumers in Electricity Markets Through Market Design and Learning
协作研究:CPS:中:通过市场设计和学习为电力市场的产消者赋权
  • 批准号:
    2038963
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Learning to Cache and Caching to Learn in High Performance Caching Systems
合作研究:CNS 核心:中:学习缓存以及在高性能缓存系统中学习缓存
  • 批准号:
    1955696
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
  • 批准号:
    1443891
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: RIPS Type 2: Strategic Analysis and Design of Robust and Resilient Interdependent Power and Communications Networks
合作研究:RIPS 类型 2:稳健且有弹性的相互依赖的电力和通信网络的战略分析和设计
  • 批准号:
    1440969
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Beyond Akamai and BitTorrent: Information and Decision Dynamics in Content Distribution Networks
职业:超越 Akamai 和 BitTorrent:内容分发网络中的信息和决策动态
  • 批准号:
    1149458
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
NSF Workshop on the Frontiers of Stochastic Systems, Networks and Control. The workshop will be held on October 27, 2012 at Texas A and M University
NSF 随机系统、网络和控制前沿研讨会。
  • 批准号:
    1235942
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Modeling, Design and Emulation of P2P Real-Time Streaming Networks
NeTS:媒介:协作研究:P2P 实时流网络的建模、设计和仿真
  • 批准号:
    0963818
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Designing a Content-Aware Internet Ecosystem
NeTS:媒介:协作研究:设计内容感知的互联网生态系统
  • 批准号:
    0904520
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于深度学习的装配式高层住宅智能设计方法研究
  • 批准号:
    52378128
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
移动蓄电介入下西北农村住宅柔性用能负荷协同调控优化研究
  • 批准号:
    52378109
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中国住宅室内空气颗粒物来源与时空变异定量模拟
  • 批准号:
    42330709
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
基于装配式的既有住宅改造设计方法研究——以上海老旧住宅改造为例
  • 批准号:
    52378032
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
针对住宅代理的安全威胁的深度挖掘与智能防护
  • 批准号:
    62302473
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CURB - Compact Urban Battery Storage System for residential apartments to support demand side response and reduce energy bills by 50%
CURB%20-%20Compact%20Urban%20Battery%20Storage%20System%20for%20residential%20apartments%20to%20support%20demand%20side%20response%20and%20reduce%20energy%20bills%20by%2050%
  • 批准号:
    10089154
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Collaborative Research: NNA Incubator: Improving Culturally Sensitive Energy Strategies in the Arctic Residential Buildings with the Co-Production of Knowledge Framework
合作研究:NNA 孵化器:通过共同制作知识框架改善北极住宅建筑的文化敏感能源战略
  • 批准号:
    2318394
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: NNA Incubator: Improving Culturally Sensitive Energy Strategies in the Arctic Residential Buildings with the Co-Production of Knowledge Framework
合作研究:NNA 孵化器:通过共同制作知识框架改善北极住宅建筑的文化敏感能源战略
  • 批准号:
    2318393
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Decarbonising Heating: A new mobile thermal energy battery for transporting heat to residential, commercial and industrial consumers for affordable heating
脱碳供暖:一种新型移动热能电池,用于向住宅、商业和工业消费者输送热量,以提供经济实惠的供暖
  • 批准号:
    10043985
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant for R&D
Distributed Optimization in Residential Power Grids for Real-Time Energy Management Using Blockchain Based Smart Contracts
使用基于区块链的智能合约对住宅电网进行分布式优化,实现实时能源管理
  • 批准号:
    RGPIN-2019-04632
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了