CAREER: Novel Debye Waller Thermometry of Oxide Interfaces for Reducing Thermal Interface Resistance

职业:用于降低热界面电阻的新型氧化物界面德拜沃勒测温法

基本信息

  • 批准号:
    1847964
  • 负责人:
  • 金额:
    $ 62.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL DESCRIPTION: To control thermal conduction in materials, it is critical to understand heat transport through various interfaces within the material. Interfaces often display thermal interface resistance (TIR), and for a broad range of electronic, photonic, and energy-harvesting materials, TIR can critically affect the materials' performance and stability. However, it is often very challenging to identify the exact origin of TIR, since it would require an exact understanding of 'what really happens' at the interface, including the exact structure of the interface and how the structure affects the thermal transport process. This project develops a novel technique that uses a small electron probe to directly measure the temperature at the interface with near atomic scale resolution and determine TIR with unprecedented precision. This new approach can deliver transformative impact to the thermal engineering of materials in many ways, by providing the new important understanding on how the atomic scale structure and defects at the interface affect TIR, verifying the existing theories and simulation results on how to reduce TIR, and providing new material design rules on how to control TIR by modifying the interface structure and composition. This project integrates the education and outreach activities for underrepresented students to provide them with opportunities to engage with researchers, motivate, and help them potentially pursue advanced degrees or careers in science and engineering. The project also includes the development of the interactive data analysis system that allows people with visual impairment to perceive and process scientific data using their auditory senses.TECHNICAL DETAILS: A new Debye-Waller thermometry under development is based on quantifying Debye-Waller factor, the attenuation of the scattered electron intensity due to thermal vibration, spatially resolved at the atomic scale, using high angle annular dark field signal in scanning transmission electron microscopy that is highly sensitive to thermal vibration. Using this new approach, the temperature profile at the interface at the atomic scale can be measured in situ, and TIR is directly determined from the profile with high precision, beyond the limits of any existing methods. This new experimental capability can validate the existing theories and hypotheses on how to reduce TIR, including the theories involving phonon matching, acoustic matching, epitaxial strain, and defect control. The validation is carried out using carefully designed perovskite oxide interfaces, which are synthesized using different structural parameters, such as the atomic mass, bond strength, strain, defect density, layer thickness, and interface roughness. The error analysis part of this work is assisted by the accommodation technology developed in this project, which allows people with disabilities to efficiently perceive, handle, and analyze the scientific data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:为了控制材料的热传导,了解通过材料中各种界面的热传输至关重要。接口通常显示热界面电阻(TIR),对于广泛的电子,光子和能量收获的材料,TIR可能会严重影响材料的性能和稳定性。但是,确定TIR的确切起源通常是非常具有挑战性的,因为它需要对界面上的“真正发生的事情”进行确切的理解,包括界面的确切结构以及结构如何影响热传输过程。该项目开发了一种新型技术,该技术使用小型电子探针直接以接近原子量表分辨率直接测量界面处的温度,并以前所未有的精度确定TIR。这种新方法可以通过多种方式对材料的热工程产生变革性的影响,通过对界面的原子尺度结构和缺陷的新重要了解影响TIR,验证现有理论和模拟结果如何减少TIR,TIR,TIR,,并提供有关如何通过修改接口结构和组成来控制TIR的新材料设计规则。该项目将教育和外展活动整合到代表性不足的学生,以为他们提供与研究人员互动,激励并帮助他们潜在地从事科学和工程学的高级学位或职业的机会。该项目还包括开发交互式数据分析系统,该系统允许具有视觉障碍的人使用其听觉感官感知和处理科学数据。技术细节:开发中的新的Debye-Waller温度计基于量化Debye-Waller因子,即Debye-Waller因子,由于热振动而导致的散射电子强度的衰减,在原子尺度上在空间上解析,在扫描透射电子显微镜中使用高角度环形磁场信号对热振动高度敏感。使用这种新方法,可以在原位测量界面处的温度曲线,而TIR是从剖面直接确定的,以高精度确定,超出了任何现有方法的限制。这种新的实验能力可以验证有关如何减少TIR的现有理论和假设,包括涉及声子匹配,声学匹配,外延菌株和缺陷控制的理论。使用精心设计的钙钛矿氧化物界面进行验证,该核心界面是使用不同的结构参数(例如原子质量,键强度,应变,缺陷密度,层厚度和界面粗糙度)合成的。该项目中开发的住宿技术的帮助,该项目的错误分析部分可以使残疾人有效地感知,处理和分析科学数据。该奖项反映了NSF的法定任务,并被认为是值得通过评估的支持。利用基金会的知识分子和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atomic Scale Debye-Waller Thermometry
原子尺度德拜-沃勒测温法
  • DOI:
    10.1017/s1431927619008948
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhu, Menglin;Johnson, Jared;Hwang, Jinwoo
  • 通讯作者:
    Hwang, Jinwoo
Scattering angle dependence of temperature susceptivity of electron scattering in scanning transmission electron microscopy
扫描透射电子显微镜中电子散射温度敏感性的散射角依赖性
  • DOI:
    10.1016/j.ultramic.2021.113419
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Zhu, Menglin;Hwang, Jinwoo
  • 通讯作者:
    Hwang, Jinwoo
Nanoscale chemistry and ion segregation in zirconia-based ceramic at grain boundaries by atom probe tomography
  • DOI:
    10.1016/j.scriptamat.2022.114603
  • 发表时间:
    2022-02-17
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Licata, Olivia G.;Zhu, Menglin;Mazumder, Baishakhi
  • 通讯作者:
    Mazumder, Baishakhi
Temperature Mapping with STEM Atomic Scale Debye-Waller Thermometry
使用 STEM 原子尺度德拜-沃勒测温法绘制温度图
  • DOI:
    10.1017/s1431927622001374
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhu, Menglin;Hwang, Jinwoo
  • 通讯作者:
    Hwang, Jinwoo
Quantification of Thermal Interface Resistance Using Atomic Scale Debye-Waller Thermometry
使用原子级德拜-沃勒测温法量化热界面电阻
  • DOI:
    10.1017/s1431927620016499
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhu, Menglin;Hwang, Jinwoo
  • 通讯作者:
    Hwang, Jinwoo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinwoo Hwang其他文献

FEMSIM + HRMC: Simulation of and structural refinement using fluctuation electron microscopy for amorphous materials
FEMSIM HRMC:使用波动电子显微镜对非晶材料进行模拟和结构细化
  • DOI:
    10.1016/j.cpc.2016.12.006
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Maldonis;Jinwoo Hwang;P. Voyles
  • 通讯作者:
    P. Voyles
Identifying Atomic Reconstruction at Complex Oxide Interfaces Using Quantitative STEM
使用定量 STEM 识别复杂氧化物界面处的原子重构
  • DOI:
    10.1017/s1431927615006972
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Jared M. Johnson;Justin K. Thompson;S. S. Seo;Jinwoo Hwang
  • 通讯作者:
    Jinwoo Hwang
Atomic scale investigation of chemical heterogeneity in β-(AlxGa1−x)2O3 films using atom probe tomography
使用原子探针断层扫描对 β-(AlxGa1−x)2O3 薄膜中的化学异质性进行原子尺度研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4
  • 作者:
    B. Mazumder;Jith Sarker;Yuewei Zhang;Jared M. Johnson;Menglin Zhu;S. Rajan;Jinwoo Hwang
  • 通讯作者:
    Jinwoo Hwang
Optical and electronic effects of rapid thermal annealing at Ir–Ga2O3 interfaces
Ir-Ga2O3 界面快速热退火的光学和电子效应
  • DOI:
    10.1063/5.0090161
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Daram N. Ramdin;M. Haseman;Hsien;K. Leedy;Jinwoo Hwang;L. Brillson
  • 通讯作者:
    L. Brillson
The strong influence of Ti, Zr, Hf solutes and their oxidation on microstructure and performance of Nb3Sn superconductors
Ti、Zr、Hf溶质及其氧化对Nb3Sn超导体微观结构和性能的强烈影响
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Xingchen Xu;X. Peng;J. Rochester;M. Sumption;J. Lee;G. C. Ortiz;Jinwoo Hwang
  • 通讯作者:
    Jinwoo Hwang

Jinwoo Hwang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinwoo Hwang', 18)}}的其他基金

Collaborative Research: Experimentally Informed Modeling of Structural Heterogeneity and Deformation of Metallic Glasses
合作研究:金属玻璃结构异质性和变形的实验知情建模
  • 批准号:
    2104724
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Predictive Modeling of Polymer-Derived Ceramics: Discovering Methods for the Design and Fabrication of Complex Disordered Solids
DMREF:协作研究:聚合物衍生陶瓷的预测建模:探索复杂无序固体的设计和制造方法
  • 批准号:
    1729086
  • 财政年份:
    2017
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Correlating structural heterogeneity to deformation in metallic glasses
将金属玻璃的结构异质性与变形相关联
  • 批准号:
    1709290
  • 财政年份:
    2017
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Research Grant
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
  • 批准号:
    2345803
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
  • 批准号:
    2305609
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Fellowship Award
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了