CAREER: Mechanobiology of Planar Cell Polarity

职业:平面细胞极性的力学生物学

基本信息

  • 批准号:
    1846866
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Epithelial cells line the surfaces of many organs in the body, including the inner surface of hollow organs. As such, they often exhibit different functional properties and abilities through the thickness of the cell - something that is called planar cellular polarity (PCP). The biofabrication of fully functional epithelial tissues has a broad application in tissue engineering and regenerative medicine. One of the main obstacles for achieving this goal is that epithelial cells grown in culture dishes typically do not demonstrate this polarity. The epithelial cell polarity within a sheet or plane of cells is tightly regulated by signaling within and between cells. This signaling does not appear to be maintained in cultured cells and, as a result, reestablishing PCP in manufactured tissues has never been achieved. In addition, some congenital abnormalities, such as spina bifida, are due to the failure of epithelial cells to function properly during embryonic development. This Faculty Early Career Development Program (CAREER) project will study the mechanical and biochemical regulatory mechanisms of planar cell polarity in vitro. The project will systematically study the effects of geometrical confinement, matrix stiffness, mechanical strains, and chemical gradients on the initiation and maintenance of PCP, as well as identify the molecules that relay external mechanical signals to the cells for establishing PCP. The educational activities in this project will provide hands-on, project-based experience to a broad audience, with an emphasis on women and underrepresented minorities. Undergraduate and graduate students will be trained in a project-based course in mechanobiology. In addition, a summer program that provides computational scientists and biologists with training in advanced bioengineering tools that are developed through this project will facilitate interdisciplinary communication. By improving understanding of how endothelial cells establish this necessary functional variation, this project will support the development of biomanufacturing and tissue engineering systems to produce layers of epithelial cells that are necessary for normal organ function. In addition, the fundamental knowledge gained will advance understanding with respect to normal and pathological tissue growth and development. The overall research goal of this project is to expand knowledge about the fundamental mechanisms through which epithelial cells, which are planar polarized, mediate strain-based signaling. This project is focused on neuroepithelial cells that are responsible for the formation of the neural tube during embryonic development, disruption of which can result in neural tube defects (such as spina bifida). This will be accomplished through three research objectives. The first is to investigate the effects of interfacial geometry and matrix stiffness on the asymmetrical distribution of PCP signaling complexes at the single cell level. This objective will use novel patterning techniques to control the areas in which the cells can grow as well as tunable hydrogels to simulate variations in extracellular matrix stiffness. The second objective is to elucidate the role of strains and the Wnt gradient (a set of signal transduction pathways in which proteins pass signals into a cell through cell surface receptors) in the alignment of PCP at the tissue level. This alignment will be evaluated at the molecular, cellular, and tissue-level through molecular assays, live-cell imaging, and tissue phenotype assessment. The final objective is to identify the mechanosensors that relay mechanical signals to the PCP pathway. This will be done through selective knock-down of various key mechanoreceptors in the cultured cells to determine how these changes affect strain-mediated alignment of PCP. The knowledge gained from these experiments will advance fundamental understanding of the development of planar cell polarity in neuroepithelial cells and will be more broadly applicable to epithelial cells in general. In addition to answering fundamental questions that are key to tissue growth and development, this research will support the advancement of biomanufacturing and tissue engineering systems that include layers of epithelial cells, which are important for normal tissue function.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
上皮细胞在体内许多器官的表面(包括空心器官的内表面)中排列。因此,它们经常通过细胞的厚度表现出不同的功能和能力 - 这被称为平面细胞极性(PCP)。功能齐全的上皮组织的生物制作在组织工程和再生医学中具有广泛的应用。实现这一目标的主要障碍之一是,在培养皿中生长的上皮细胞通常不会证明这种极性。细胞片或平面内的上皮细胞极性受细胞内和之间的信号传导的严格调节。该信号似乎无法在培养的细胞中维持,因此,从未实现制造组织中的PCP。此外,某些先天性异常,例如脊柱裂,是由于上皮细胞在胚胎发育过程中无法正常发挥作用。这个教师早期职业发展计划(职业)项目将研究体外平面细胞极性的机械和生化调节机制。该项目将系统地研究几何限制,基质刚度,机械菌株和化学梯度对PCP的启动和维持的影响,并确定将外部机械信号传递到PCP的细胞的分子。该项目中的教育活动将为广泛的受众提供基于项目的实践,基于项目的经验,重点是妇女和代表性不足的少数民族。本科生和研究生将接受基于项目的机械生物学课程的培训。此外,通过该项目开发的高级生物工程工具培训的计算科学家和生物学家提供了一项夏季计划,将有助于跨学科的交流。通过提高对内皮细胞如何建立这种必要的功能变化的理解,该项目将支持生物制造和组织工程系统的开发,以生成正常器官功能所必需的上皮细胞层。此外,获得的基本知识将在正常和病理组织的生长和发育方面提高理解。该项目的总体研究目标是扩大有关基本机制的知识,这些机制是平面化,介导基于应变的信号传导的上皮细胞。该项目的重点是导致胚胎发育过程中神经管形成的神经上皮细胞,其破坏可能导致神经管缺陷(例如脊柱裂片)。这将通过三个研究目标实现。首先是研究界面几何形状和基质刚度对单细胞水平上PCP信号复合物不对称分布的影响。该目标将使用新颖的图案技术来控制细胞可以生长的区域以及可调水凝胶,以模拟细胞外基质刚度的变化。第二个目标是阐明菌株和Wnt梯度的作用(一组信号转导途径,其中蛋白质通过细胞表面受体传递信号进入细胞表面受体)在组织水平的PCP对齐中。该比对将通过分子测定,活细胞成像和组织表型评估在分子,细胞和组织水平上进行评估。最终目标是识别将机械信号传递到PCP途径的机械传感器。这将通过在培养细胞中的各种关键机械感受者的选择性敲低,以确定这些变化如何影响PCP的应变介导的比对。从这些实验中获得的知识将提高对神经上皮细胞中平面细胞极性发展的基本了解,并将更广泛地适用于上皮细胞。除了回答组织生长和开发至关重要的基本问题外,这项研究还将支持包括上皮细胞层的生物制造和组织工程系统的发展,这对于正常组织功能很重要。这项奖项反映了NSF的法定任务,并通过使用该基金会的知识优点和广泛的criperia来评估,这是NSF的法定任务。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temporal Modulations of NODAL, BMP, and WNT Signals Guide the Spatial Patterning in Self-Organized Human Ectoderm Tissues
NODAL、BMP 和 WNT 信号的时间调制指导自组织人类外胚层组织的空间模式
  • DOI:
    10.1016/j.matt.2020.04.012
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Xie, Tianfa;Kang, Jiming;Pak, ChangHui;Yuan, Hongyan;Sun, Yubing
  • 通讯作者:
    Sun, Yubing
Patterning Neuroepithelial Cell Sheet via a Sustained Chemical Gradient Generated by Localized Passive Diffusion Devices
通过局部被动扩散装置产生的持续化学梯度对神经上皮细胞片进行图案化
  • DOI:
    10.1021/acsbiomaterials.0c01365
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Li, Ningwei;Yang, Feiyu;Parthasarathy, Subiksha;Pierre, Sarah St.;Hong, Kelly;Pavon, Narciso;Pak, ChangHui;Sun, Yubing
  • 通讯作者:
    Sun, Yubing
Heavy Metal Exposure Leads to Rapid Changes in Cellular Biophysical Properties
  • DOI:
    10.1021/acsbiomaterials.9b01640
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Zhu,Peiran;Hawkins,Jamar;Sun,Yubing
  • 通讯作者:
    Sun,Yubing
共 3 条
  • 1
前往

Yubing Sun其他文献

Retraction: Enhanced adsorption of Eu(iii) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques.
撤稿:通过宏观和微观技术研究了介孔 Al2O3/膨胀石墨复合材料上 Eu(iii) 的增强吸附。
  • DOI:
    10.1039/d0dt90075c
    10.1039/d0dt90075c
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Yubing Sun;Changlun Chen;X. Tan;D. Shao;Jiaxing Li;Guixia Zhao;Shubin Yang;Qi Wang;Xiangke Wang
    Yubing Sun;Changlun Chen;X. Tan;D. Shao;Jiaxing Li;Guixia Zhao;Shubin Yang;Qi Wang;Xiangke Wang
  • 通讯作者:
    Xiangke Wang
    Xiangke Wang
Mechanotransduction-Induced Reversible Phenotypic Switching in Prostate Cancer Cells.
前列腺癌细胞中机械转导诱导的可逆表型转换。
  • DOI:
    10.1016/j.bpj.2017.02.012
    10.1016/j.bpj.2017.02.012
  • 发表时间:
    2017
    2017
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Koh Meng Aw Yong;Yubing Sun;S. Merajver;Jianping Fu
    Koh Meng Aw Yong;Yubing Sun;S. Merajver;Jianping Fu
  • 通讯作者:
    Jianping Fu
    Jianping Fu
A Wireless Integrated EEG–fNIRS System for Brain Function Monitoring
用于脑功能监测的无线集成 EEG-fNIRS 系统
  • DOI:
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Wenjie Cui;Kai Lin;Guangda Liu;Yubing Sun;Jing Cai
    Wenjie Cui;Kai Lin;Guangda Liu;Yubing Sun;Jing Cai
  • 通讯作者:
    Jing Cai
    Jing Cai
algorithms enhance the speci fi city of cancer biomarker detection using SERS-based immunoassays in micro fl uidic chips †
算法使用微流控芯片中基于 SERS 的免疫测定增强癌症生物标志物检测的特异性 †
  • DOI:
  • 发表时间:
    2019
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nariman Banaei;J. Moshfegh;Arman Mohseni;J. Houghton;Yubing Sun;Byung Kim
    Nariman Banaei;J. Moshfegh;Arman Mohseni;J. Houghton;Yubing Sun;Byung Kim
  • 通讯作者:
    Byung Kim
    Byung Kim
Condensation tendency of connected contractile tissue with planar isotropic actin network
平面各向同性肌动蛋白网络连接收缩组织的凝结趋势
  • DOI:
    10.1101/2020.06.23.168237
    10.1101/2020.06.23.168237
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianfa Xie;Sarah R. St. Pierre;Nonthakorn Olaranont;Lauren E. Brown;Min Wu;Yubing Sun
    Tianfa Xie;Sarah R. St. Pierre;Nonthakorn Olaranont;Lauren E. Brown;Min Wu;Yubing Sun
  • 通讯作者:
    Yubing Sun
    Yubing Sun
共 10 条
  • 1
  • 2
前往

Yubing Sun的其他基金

Innervating stackable neural organoid slices with tissue-like mesh electrodes for improved neural circuit development and characterization
具有组织样网状电极的神经支配可堆叠神经类器官切片,可改善神经回路的发育和表征
  • 批准号:
    2326703
    2326703
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
Biomechanical Regulation in Human Neural Induction
人类神经感应的生物力学调节
  • 批准号:
    1662835
    1662835
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于机械生物学的疏松牙槽骨低损伤、致密化种植备洞方法与应用评价
  • 批准号:
    52175422
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于DNA机器分子力谱的机械力诱导DNA结构多样性及其生物学效应研究
  • 批准号:
    22174107
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
低载荷机械振动改善糖尿病及其骨质疏松并发症的力学生物学机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基底刚度耦合机械拉伸促进肺泡上皮细胞分化的力学生物学机制研究
  • 批准号:
    11902007
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
B淋巴细胞机械力感知生物学:分子机制及应用
  • 批准号:
    81961130394
  • 批准年份:
    2019
  • 资助金额:
    50 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
  • 批准号:
    EP/Y033981/1
    EP/Y033981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Research Grant
    Research Grant
REU Site: Mechanobiology at VCU
REU 网站:VCU 机械生物学
  • 批准号:
    2349211
    2349211
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
Creating an All-optical, Mechanobiology-guided, and Machine-learning-powered High-throughput Framework to Elucidate Neural Dynamics
创建全光学、机械生物学引导和机器学习驱动的高通量框架来阐明神经动力学
  • 批准号:
    2308574
    2308574
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Mechanobiology of Load-bearing Interfaces
职业:承载界面的力学生物学
  • 批准号:
    2239665
    2239665
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    Standard Grant
    Standard Grant
CellMechBio: the influence of cellular mechanobiology on organ development
CellMechBio:细胞力学生物学对器官发育的影响
  • 批准号:
    FT230100352
    FT230100352
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
    ARC Future Fellowships
    ARC Future Fellowships