RI: Small: Parallel Methods for Large-Scale Probabilistic Inference

RI:小型:大规模概率推理的并行方法

基本信息

  • 批准号:
    1829403
  • 负责人:
  • 金额:
    $ 43.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

We are undergoing a revolution in data. We have grown accustomed to constant upheaval in computing -- quicker processors, bigger storage and faster networks -- but this century presents the new challenge of almost unlimited access to raw data. Whether from sensor networks, social computing, or high-throughput cell biology, we face a deluge of data about our world. Scientists, engineers, policymakers, and industrialists need to use these enormous floods of data to make better decisions. This research project is about providing foundations for tools to achieve these goals. Simple models give only coarse understanding. The world is sophisticated and dynamic, providing rich information. Furthermore, representation of uncertainty is critical to discovering patterns in complex data. Not only are many natural processes intrinsically random, but our knowledge is always limited. The calculus of probability allows us to represent this uncertainty and design algorithms to act effectively in an unpredictable world. The gold standard for probabilistic analysis is Markov chain Monte Carlo (MCMC), a way to identify hypotheses about the unobserved structure of the world that are consistent with observed data. It is a powerful and principled way to perform data analysis, but traditional MCMC methods do not map well onto modern computing environments. MCMC is a sequential procedure that cannot generally take advantage of the parallelism offered by multi-core desktops and laptops, cloud computing, and graphical processing units. This research will develop new methods for MCMC that are provably correct, but that take advantage of large-scale parallel computing. There are a variety of broader impacts of this work. In addition to the core technical contributions, the project engages in deep scientific collaborations. New photovoltaic materials will lead to better solar cells and more sustainable energy production. New techniques for uncovering genetic regulatory mechanisms will lead to better understanding of disease. Quantitative models of mouse activity will give insight into the neural basis of behavior and provide a deeper understanding of brain disorders. From a technical point of view, this work pursues two complementary approaches to large-scale Bayesian data analysis with MCMC: 1) a novel general-purpose framework for sharing of information between parallel Markov chains for faster mixing, and 2) a new computational concept for speculative parallelization of individual Markov chains. These theoretical and practical explorations, combined with the release of associated open source software, will yield more robust and scalable probabilistic modeling. It will develop provably-correct foundations and efficient new algorithms for parallelization of Markov transition operators for posterior simulation. These operators will be used in three collaborations that are representative of the methodological demands for large-scale statistical inference: 1) predicting the efficiencies of novel organic photovoltaic materials, 2) discovering new genetic regulatory mechanisms, and 3) quantitative neuroscientific models for mouse behavior. While this proposal focuses on the generalizable technical challenges of these problems, these collaborations provide compelling examples of how machine learning can be broadly transformative.Finally, the project includes a significant outreach component, engaging with local middle schoolers, and involving underrepresented minorities in summer research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们正在经历一场数据革命。 我们已经习惯了计算领域的持续剧变——更快的处理器、更大的存储和更快的网络——但本世纪提出了几乎无限地访问原始数据的新挑战。 无论是来自传感器网络、社会计算还是高通量细胞生物学,我们都面临着关于我们世界的海量数据。 科学家、工程师、政策制定者和实业家需要利用这些海量数据来做出更好的决策。 该研究项目旨在为实现这些目标的工具提供基础。简单的模型只能提供粗略的理解。 世界是复杂的、动态的,提供了丰富的信息。 此外,不确定性的表示对于发现复杂数据中的模式至关重要。 不仅许多自然过程本质上是随机的,而且我们的知识总是有限的。 概率计算使我们能够表示这种不确定性并设计算法,以便在不可预测的世界中有效地采取行动。概率分析的黄金标准是马尔可夫链蒙特卡罗 (MCMC),这是一种识别与观测数据一致的未观测到的世界结构的假设的方法。 它是执行数据分析的一种强大且有原则的方法,但传统的 MCMC 方法不能很好地映射到现代计算环境。 MCMC 是一个顺序过程,通常无法利用多核台式机和笔记本电脑、云计算和图形处理单元提供的并行性。 这项研究将为 MCMC 开发新方法,这些方法已被证明是正确的,但利用了大规模并行计算的优势。这项工作具有多种更广泛的影响。 除了核心技术贡献外,该项目还进行深入的科学合作。 新的光伏材料将带来更好的太阳能电池和更可持续的能源生产。 揭示基因调控机制的新技术将有助于更好地了解疾病。小鼠活动的定量模型将深入了解行为的神经基础,并提供对大脑疾病的更深入的了解。 从技术角度来看,这项工作追求两种利用 MCMC 进行大规模贝叶斯数据分析的互补方法:1)一种新颖的通用框架,用于在并行马尔可夫链之间共享信息以实现更快的混合;2)一种新的计算概念用于单个马尔可夫链的推测并行化。这些理论和实践探索,再加上相关开源软件的发布,将产生更稳健和可扩展的概率模型。它将开发可证明正确的基础和高效的新算法,用于后验模拟的马尔可夫转移算子的并行化。 这些算子将用于代表大规模统计推断的方法学需求的三个合作:1)预测新型有机光伏材料的效率,2)发现新的遗传调控机制,以及3)小鼠行为的定量神经科学模型。虽然该提案侧重于这些问题的普遍技术挑战,但这些合作提供了令人信服的例子,说明机器学习如何能够进行广泛的变革。最后,该项目包括一个重要的外展部分,与当地中学生接触,并让代表性不足的少数群体参与夏季研究该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Adams其他文献

The organization and dynamics of adolescent conflict with parents and friends
青少年与父母和朋友冲突的组织和动态
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Adams;B. Laursen
  • 通讯作者:
    B. Laursen
Determination of Catecholamine Content Changes in Mouse Brain Following Chronic Ketogenic Diet
慢性生酮饮食后小鼠脑中儿茶酚胺含量变化的测定
  • DOI:
    10.1111/j.1528-1167.2008.01838.x
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Ryan Adams
  • 通讯作者:
    Ryan Adams
Towards the Characterization of Cyber-Physical System Interdependencies in the Electric Grid
电网中信息物理系统相互依赖性的表征
Probabilistic Prediction of Material Stability: Integrating Convex Hulls into Active Learning
材料稳定性的概率预测:将凸包集成到主动学习中
  • DOI:
    10.1111/j.1399-3054.1990.tb05673.x
  • 发表时间:
    2024-02-23
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Andrew Novick;Diana Cai;Quan Nguyen;Roman Garnett;Ryan Adams;Eric Toberer
  • 通讯作者:
    Eric Toberer
Interpersonal conflict, agreeableness, and personality development.
人际冲突、宜人性和个性发展。
  • DOI:
    10.1111/1467-6494.7106007
  • 发表时间:
    2003-12-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    L. Jensen‐Campbell;K. Gleason;Ryan Adams;Kenya T. Malcolm
  • 通讯作者:
    Kenya T. Malcolm

Ryan Adams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Adams', 18)}}的其他基金

RI: Small: Accelerating Machine Learning via Randomized Automatic Differentiation
RI:小型:通过随机自动微分加速机器学习
  • 批准号:
    2007278
  • 财政年份:
    2020
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Standard Grant
RI: Small: Parallel Methods for Large-Scale Probabilistic Inference
RI:小型:大规模概率推理的并行方法
  • 批准号:
    1421780
  • 财政年份:
    2014
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Continuing Grant
Microwave Circulators Based on Magnetostatic Waves
基于静磁波的微波循环器
  • 批准号:
    1028472
  • 财政年份:
    2010
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Standard Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RI: Small: Parallel Methods for Large-Scale Probabilistic Inference
RI:小型:大规模概率推理的并行方法
  • 批准号:
    1421780
  • 财政年份:
    2014
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Continuing Grant
RI: Small: GraphLab 2: An Abstraction and System for Large-Scale Parallel Machine Learning on Natural Graphs
RI:小型:GraphLab 2:自然图上大规模并行机器学习的抽象和系统
  • 批准号:
    1258741
  • 财政年份:
    2012
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Standard Grant
RI: Small: GraphLab 2: An Abstraction and System for Large-Scale Parallel Machine Learning on Natural Graphs
RI:小型:GraphLab 2:自然图上大规模并行机器学习的抽象和系统
  • 批准号:
    1218756
  • 财政年份:
    2012
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Standard Grant
RI: SMALL: Modeling Voice Source Transformation in Monolingual and Crosslingual Non-parallel Voice Conversion Applications
RI:SMALL:对单语言和跨语言非并行语音转换应用中的语音源转换进行建模
  • 批准号:
    1116475
  • 财政年份:
    2011
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Continuing Grant
RI-Small: Structured Duplicate Detection: A New Approach to External-Memory and Parallel Graph Search
RI-Small:结构化重复检测:外部存储器和并行图搜索的新方法
  • 批准号:
    0812558
  • 财政年份:
    2008
  • 资助金额:
    $ 43.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了