CAREER: CIF: Theory and Applications of Geometric Deep Learning

职业:CIF:几何深度学习的理论与应用

基本信息

  • 批准号:
    1845360
  • 负责人:
  • 金额:
    $ 45.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Deep Learning has quickly become the gold standard for solving a multitude of tasks in computer vision, speech recognition, and natural language processing. In essence, appropriately designed artificial neural networks are shown large quantities of labeled data-points, allowing their internal parameters to be continually adjusted or 'learned'. Despite its apparent simplicity, such neural networks require certain regularities in the input data domain in order to become effective, which limits its application to areas beyond those described above. For example, in natural images, pixels are arranged into regular squared grids, whereas text and speech contains samples sequentially aligned. This project aims at overcoming this important limitation, by allowing neural networks to operate on far more general data domains, such as chemical compounds or social networks. Its research outcomes have the potential to impact a broad range of technological areas currently limited by lack of appropriate end-to-end learning systems and/or computational scalability. Besides the prospect of significantly increasing the efficiency of data-driven discoveries in physics and chemistry domains, the methods studied in this project directly apply to related disciplines such as weather forecasting or network science. This project will foster cross-disciplinary collaborations between physicists, chemists, computer scientists and applied mathematicians, and will support education and diversity by creating novel courses and outreach activities integrating these disciplines.The goal of this project is to develop the mathematical and statistical foundations of geometric deep learning---a family of neural network models and algorithms that leverage geometric properties of the data in order to solve complex tasks---and to demonstrate its effectiveness in practical settings such as the physical sciences. This will be enabled by addressing two important limitations of current deep learning methods. The first is their ability to learn how to perform algorithmic or statistical inference tasks with optimum computational complexity, which the second is their application to domains that lack the regular sampling structure of images, video, text or speech. Both objectives share a fundamental interplay between geometry and learning that this project aims to elucidate. This project pursues the notion of geometric stability, the mathematical foundation that underpins the efficiency of deep learning architectures and facilitates its extension to more general domains, modeled as graphs. This will be used to study the optimization landscape and generalization error of geometric deep learning models, where current learning theory struggles to explain its empirical performance. Finally, the project will demonstrate the effectiveness of geometric deep learning with applications to physical sciences. Most physical systems---from atoms to galaxies---are governed by complex dynamical systems and are defined over irregular, non-Euclidean domains, presenting a serious challenge for existing deep learning architectures. This project seeks to overcome these limitations by building 'physics-aware' geometric deep learning models with adaptive computational complexity, applied to particle physics, chemistry and cosmology, by incorporating prior knowledge of the physical dynamics into the graph structure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习已迅速成为解决计算机视觉,语音识别和自然语言处理中多种任务的黄金标准。从本质上讲,适当设计的人工神经网络显示了大量标记的数据点,使其内部参数可以不断调整或“学习”。尽管具有明显的简单性,但此类神经网络仍需要输入数据域中的某些规律性才能有效,这将其应用限制在上面描述的领域。例如,在自然图像中,像素被排列到常规平方网格中,而文本和语音依次包含样品。该项目旨在通过允许神经网络在更一般的数据域(例如化合物或社交网络)上运行,以克服这一重要限制。它的研究成果有可能影响当前缺乏适当的端到端学习系统和/或计算可扩展性的广泛技术领域。除了显着提高物理和化学领域中数据驱动发现效率的前景外,该项目中研究的方法直接适用于相关学科,例如天气预报或网络科学。 This project will foster cross-disciplinary collaborations between physicists, chemists, computer scientists and applied mathematicians, and will support education and diversity by creating novel courses and outreach activities integrating these disciplines.The goal of this project is to develop the mathematical and statistical foundations of geometric deep learning---a family of neural network models and algorithms that leverage geometric properties of the data in order to solve complex tasks---and to展示其在物理科学等实际环境中的有效性。这将通过解决当前深度学习方法的两个重要局限性来实现。首先是他们学习如何具有最佳计算复杂性执行算法或统计推断任务的能力,其次是它们应用于缺乏图像,视频,文本或语音的常规采样结构的域。这两个目标都共享了该项目旨在阐明的几何和学习之间的基本相互作用。该项目追求几何稳定性的概念,即基础的数学基础,该基础是深度学习体系结构的效率,并促进了其扩展到更通用的域,以图形为模型。这将用于研究几何深度学习模型的优化格局和概括误差,其中当前的学习理论努力解释其经验表现。最后,该项目将通过应用于物理科学的应用来证明几何深度学习的有效性。大多数物理系统 - 从原子到星系 - - 由复杂的动力学系统支配,并在不规则的非欧国人领域定义,对现有的深度学习体系结构构成了严重的挑战。该项目旨在通过将“物理意识”的几何深度学习模型建立具有适应性计算复杂性,应用于粒子物理,化学和宇宙学,将物理动态的先验知识纳入图形结构。该奖项反映了NSF的法定任务,并通过使用基金会的智力效果和宽阔的范围进行评估。

项目成果

期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Permutation-Equivariant Neural Network Architecture For Auction Design
  • DOI:
    10.1609/aaai.v35i6.16711
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jad Rahme;Samy Jelassi;Joan Bruna;S. Weinberg
  • 通讯作者:
    Jad Rahme;Samy Jelassi;Joan Bruna;S. Weinberg
Can graph neural networks count substructures?
  • DOI:
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhengdao Chen;Lei Chen;Soledad Villar;Joan Bruna
  • 通讯作者:
    Zhengdao Chen;Lei Chen;Soledad Villar;Joan Bruna
Data-driven multiscale modeling of subgrid parameterizations in climate models
  • DOI:
    10.48550/arxiv.2303.17496
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karl Otness;L. Zanna;Joan Bruna
  • 通讯作者:
    Karl Otness;L. Zanna;Joan Bruna
Neural Fields as Learnable Kernels for 3D Reconstruction
Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias
用卷积大海捞针:论架构偏差的好处
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joan Bruna Estrach其他文献

Treball de Final de Grau Planning with Arithmetic and Geometric Attributes
具有算术和几何属性的 Treball de Final de Grau 规划
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Garcia;Joan Bruna Estrach
  • 通讯作者:
    Joan Bruna Estrach
Semi-Supervised Learning for Training CNNs with Few Data
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joan Bruna Estrach
  • 通讯作者:
    Joan Bruna Estrach

Joan Bruna Estrach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joan Bruna Estrach', 18)}}的其他基金

CHS: Medium: Geometric Deep Learning for Accurate and Efficient Physics Simulation
CHS:中:几何深度学习用于准确高效的物理模拟
  • 批准号:
    1901091
  • 财政年份:
    2019
  • 资助金额:
    $ 45.38万
  • 项目类别:
    Continuing Grant
RI:Small:NSF-BSF: Computational and Statistical Tradeoffs in Inverse Problems using Deep Learning
RI:Small:NSF-BSF:使用深度学习的逆问题中的计算和统计权衡
  • 批准号:
    1816753
  • 财政年份:
    2018
  • 资助金额:
    $ 45.38万
  • 项目类别:
    Standard Grant

相似国自然基金

SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
  • 批准号:
    2324396
  • 财政年份:
    2023
  • 资助金额:
    $ 45.38万
  • 项目类别:
    Standard Grant
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
  • 批准号:
    2327013
  • 财政年份:
    2023
  • 资助金额:
    $ 45.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    $ 45.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    $ 45.38万
  • 项目类别:
    Standard Grant
CIF:Small:Toward a Modern Theory of Compression: Manifold Sources and Learned Compressors
CIF:小:迈向现代压缩理论:流形源和学习压缩机
  • 批准号:
    2306278
  • 财政年份:
    2023
  • 资助金额:
    $ 45.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了