CAREER: CIF: Theory and Applications of Geometric Deep Learning
职业:CIF:几何深度学习的理论与应用
基本信息
- 批准号:1845360
- 负责人:
- 金额:$ 45.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep Learning has quickly become the gold standard for solving a multitude of tasks in computer vision, speech recognition, and natural language processing. In essence, appropriately designed artificial neural networks are shown large quantities of labeled data-points, allowing their internal parameters to be continually adjusted or 'learned'. Despite its apparent simplicity, such neural networks require certain regularities in the input data domain in order to become effective, which limits its application to areas beyond those described above. For example, in natural images, pixels are arranged into regular squared grids, whereas text and speech contains samples sequentially aligned. This project aims at overcoming this important limitation, by allowing neural networks to operate on far more general data domains, such as chemical compounds or social networks. Its research outcomes have the potential to impact a broad range of technological areas currently limited by lack of appropriate end-to-end learning systems and/or computational scalability. Besides the prospect of significantly increasing the efficiency of data-driven discoveries in physics and chemistry domains, the methods studied in this project directly apply to related disciplines such as weather forecasting or network science. This project will foster cross-disciplinary collaborations between physicists, chemists, computer scientists and applied mathematicians, and will support education and diversity by creating novel courses and outreach activities integrating these disciplines.The goal of this project is to develop the mathematical and statistical foundations of geometric deep learning---a family of neural network models and algorithms that leverage geometric properties of the data in order to solve complex tasks---and to demonstrate its effectiveness in practical settings such as the physical sciences. This will be enabled by addressing two important limitations of current deep learning methods. The first is their ability to learn how to perform algorithmic or statistical inference tasks with optimum computational complexity, which the second is their application to domains that lack the regular sampling structure of images, video, text or speech. Both objectives share a fundamental interplay between geometry and learning that this project aims to elucidate. This project pursues the notion of geometric stability, the mathematical foundation that underpins the efficiency of deep learning architectures and facilitates its extension to more general domains, modeled as graphs. This will be used to study the optimization landscape and generalization error of geometric deep learning models, where current learning theory struggles to explain its empirical performance. Finally, the project will demonstrate the effectiveness of geometric deep learning with applications to physical sciences. Most physical systems---from atoms to galaxies---are governed by complex dynamical systems and are defined over irregular, non-Euclidean domains, presenting a serious challenge for existing deep learning architectures. This project seeks to overcome these limitations by building 'physics-aware' geometric deep learning models with adaptive computational complexity, applied to particle physics, chemistry and cosmology, by incorporating prior knowledge of the physical dynamics into the graph structure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习已迅速成为解决计算机视觉、语音识别和自然语言处理领域众多任务的黄金标准。本质上,适当设计的人工神经网络会显示大量标记的数据点,从而允许其内部参数不断调整或“学习”。尽管其表面上很简单,但此类神经网络需要输入数据域中的某些规律才能变得有效,这限制了其应用范围超出上述范围。例如,在自然图像中,像素被排列成规则的方形网格,而文本和语音包含顺序对齐的样本。该项目旨在通过允许神经网络在更通用的数据域(例如化合物或社交网络)上运行来克服这一重要限制。其研究成果有可能影响目前因缺乏适当的端到端学习系统和/或计算可扩展性而受到限制的广泛技术领域。除了显着提高物理和化学领域数据驱动发现的效率之外,该项目研究的方法还直接应用于天气预报或网络科学等相关学科。该项目将促进物理学家、化学家、计算机科学家和应用数学家之间的跨学科合作,并将通过创建整合这些学科的新颖课程和外展活动来支持教育和多样性。该项目的目标是发展数学和统计基础几何深度学习——一系列神经网络模型和算法,利用数据的几何特性来解决复杂的任务——并证明其在物理科学等实际环境中的有效性。这将通过解决当前深度学习方法的两个重要限制来实现。第一个是它们学习如何以最佳计算复杂性执行算法或统计推理任务的能力,第二个是它们在缺乏图像、视频、文本或语音的常规采样结构的领域中的应用。这两个目标都具有几何和学习之间的基本相互作用,该项目旨在阐明这一点。该项目追求几何稳定性的概念,这是支撑深度学习架构效率的数学基础,并促进其扩展到更通用的领域(以图为模型)。这将用于研究几何深度学习模型的优化景观和泛化误差,当前的学习理论很难解释其实证性能。最后,该项目将展示几何深度学习在物理科学中的应用的有效性。大多数物理系统(从原子到星系)都受复杂的动力系统控制,并且是在不规则的非欧几里得域上定义的,这对现有的深度学习架构提出了严峻的挑战。该项目旨在通过将物理动力学的先验知识纳入图形结构,构建具有自适应计算复杂性的“物理感知”几何深度学习模型,应用于粒子物理、化学和宇宙学,从而克服这些限制。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Permutation-Equivariant Neural Network Architecture For Auction Design
- DOI:10.1609/aaai.v35i6.16711
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Jad Rahme;Samy Jelassi;Joan Bruna;S. Weinberg
- 通讯作者:Jad Rahme;Samy Jelassi;Joan Bruna;S. Weinberg
Can graph neural networks count substructures?
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Zhengdao Chen;Lei Chen;Soledad Villar;Joan Bruna
- 通讯作者:Zhengdao Chen;Lei Chen;Soledad Villar;Joan Bruna
Data-driven multiscale modeling of subgrid parameterizations in climate models
- DOI:10.48550/arxiv.2303.17496
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Karl Otness;L. Zanna;Joan Bruna
- 通讯作者:Karl Otness;L. Zanna;Joan Bruna
Neural Fields as Learnable Kernels for 3D Reconstruction
- DOI:10.1109/cvpr52688.2022.01795
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Francis Williams;Zan Gojcic;S. Khamis;D. Zorin;Joan Bruna;S. Fidler;O. Litany
- 通讯作者:Francis Williams;Zan Gojcic;S. Khamis;D. Zorin;Joan Bruna;S. Fidler;O. Litany
Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias
用卷积大海捞针:论架构偏差的好处
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:d'Ascoli, Stephane;Sagun, Levent;Bruna, Joan;Biroli, Giulio
- 通讯作者:Biroli, Giulio
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joan Bruna Estrach其他文献
Treball de Final de Grau Planning with Arithmetic and Geometric Attributes
具有算术和几何属性的 Treball de Final de Grau 规划
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
D. Garcia;Joan Bruna Estrach - 通讯作者:
Joan Bruna Estrach
Semi-Supervised Learning for Training CNNs with Few Data
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Joan Bruna Estrach - 通讯作者:
Joan Bruna Estrach
Joan Bruna Estrach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joan Bruna Estrach', 18)}}的其他基金
CHS: Medium: Geometric Deep Learning for Accurate and Efficient Physics Simulation
CHS:中:几何深度学习用于准确高效的物理模拟
- 批准号:
1901091 - 财政年份:2019
- 资助金额:
$ 45.38万 - 项目类别:
Continuing Grant
RI:Small:NSF-BSF: Computational and Statistical Tradeoffs in Inverse Problems using Deep Learning
RI:Small:NSF-BSF:使用深度学习的逆问题中的计算和统计权衡
- 批准号:
1816753 - 财政年份:2018
- 资助金额:
$ 45.38万 - 项目类别:
Standard Grant
相似国自然基金
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 45.38万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 45.38万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311274 - 财政年份:2023
- 资助金额:
$ 45.38万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311275 - 财政年份:2023
- 资助金额:
$ 45.38万 - 项目类别:
Standard Grant
CIF:Small:Toward a Modern Theory of Compression: Manifold Sources and Learned Compressors
CIF:小:迈向现代压缩理论:流形源和学习压缩机
- 批准号:
2306278 - 财政年份:2023
- 资助金额:
$ 45.38万 - 项目类别:
Standard Grant