RCN: A Research Coordination Network for the SZ4D Initiative

RCN:SZ4D 计划的研究协调网络

基本信息

  • 批准号:
    1828096
  • 负责人:
  • 金额:
    $ 49.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

The plate tectonic features known as "subduction zones" produce the most devastating seismic, volcanic, and landslide hazards on the planet. They are placed where two tectonic plates collide and form most of the major volcanoes of the world such as the Cascades of the U.S. and Canada or Mt. Fuji of Japan, and subduction zones also host most of the truly giant earthquakes and tsunami that occur on Earth. Unlike other hazards such as hurricanes, nearly all damaging earthquakes and many volcanic eruptions occur without advance warning. The scientific community has identified research into the underlying processes that cause these events as a critical, high-priority future need. Emerging technologies are now providing new ways to make continuous observations in real time of the subtle changes in activity at volcanoes and earthquake faults that reveal what is going on before the disaster strikes. For example, it is now possible to monitor tiny displacements of the sea bed over the offshore faults, or measure gases emitted by volcanoes as magma moves underground. These new technologies need to be deployed in a systematic and comprehensive way that will allow researchers to transform understanding of quakes, tsunamis, eruptions, and landslides. The principal goal of this Research Coordination Network (RCN) is to organize and coordinate activity of the geologists and geophysicists who study subduction zones in order to develop the next generation of observatories and measurements. It is called SZ4D, or "subduction zones in four dimensions" because the objective is comprehensive study of the tectonic processes over three-dimensions of space in the earth and also over time (ranging from seconds during earthquakes to decades - and beyond in the geologic record). Over its three year duration, the SZ4D RCN will bring many dozens of specialists together to talk across discipline boundaries assessing the leading edge of research, devise the best next generation of studies, and develop practical plans for the implementation of a new national research infrastructure. This project is fundamentally organizational - it will not conduct new research itself, but will serve as the central coordination backbone and communication channel for hundreds of U.S. university-based researchers and their international collaborators. The work will be organized thematically into teams addressing three questions: What controls earthquake and tsunami processes along the subduction fault and other related hazardous faults? What processes govern when and how volcanoes erupt? and How are landslides and other surface hazards linked to seismic and/or longer term plate tectonic activity? The RCN's main mission is to develop, by consensus of the researchers active in studying subduction zones, an inclusive and comprehensive plan for coordinated future research. It will integrate both established scientists and early-career investigators, including advanced graduate students, and will be broadly inclusive of the scientific community. The main product, besides the positive impact of the network itself in linking scientists, will be a blueprint for a decade or more of US national effort: an SZ4D Implementation Plan. This will be provided to NSF, NASA and other agencies, as well as the research community, to guide plans for potential major new initiatives to serve science and society in coming decades. Subduction zones produce the most devastating seismic, volcanic, and landslide hazards on the planet, yet critical understanding of the basic physical and chemical processes controlling the occurrence, timing, and magnitude of earthquakes, eruptions, and landslides in these dynamic geographic settings remains sorely lacking. In recognition of the critical research need for science and society, the National Science Foundation sponsored the Subduction Zone Observatory workshop in 2016, where a vision for a new Subduction Zones Through Space and Time (SZ4D) Initiative was developed. This SZ4D Research Coordination Network (RCN) is proposed to provide that integration and turn the vision into a concrete and viable plan over a three-year, highly inclusive planning process that will engage the U.S. subduction zone research community as well as many international partners. It has two major goals: (1) To sharpen and prioritize the scientific and technical challenges for research into how earthquake & tsunami generating faults and volcanic eruptions work, with the ultimate goal of producing an SZ4D Implementation Plan. (2) To act as a central communication channel for the growing activities by multidisciplinary research teams, federal agencies, and others. We seek to define new strategies to attack problems, developing for example new seafloor and volcano observational capabilities, conducting community experiments, and planning for rapid event response. The science of subduction zone hazards is a massive effort in the geosciences today encompassing a vast array of disparate research efforts, and the SZ4D Vision Document makes it clear that there is both need and a community desire to coordinate and integrate research, technological development, and model frameworks to increase our predictive understanding of eruptions, tsunamis, earthquakes and landslides. This RCN is a key step in turning this vision into a unified community plan. P.I. Tobin will lead a 15 member Steering Committee that will in turn oversee four Working Groups that will build the SZ4D Implementation Plan. The RCN will develop research community engagement and interaction through a website, e-news mailing list, and open meetings at scientific conferences. The RCN Working Groups will be organized around scientific questions including: What controls earthquake and tsunami processes along the subduction fault and other related hazardous faults? What processes govern when and how volcanoes erupt? and How are landslides and other surface hazards linked to seismic and/or longer term plate tectonic activity? Because subduction hazards occur around the globe, the RCN will engage many international partners to develop cooperative plans for field research. This RCN will coordinate the efforts of researchers across many geoscience disciplines. The network, guided by the blueprint in the SZ4D Vision document, will be open to all researchers and emphasize collaboration, consensus-building, and the participation of early-career scientists in the U.S. and internationally. When fully realized, the SZ4D vision will be the vehicle to develop an new generation of multidisciplinary geoscientists and public awareness of subduction zone processes and hazards.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
被称为“俯冲带”的板块构造特征产生了地球上最具破坏性的地震、火山和山体滑坡灾害。它们位于两个构造板块碰撞的地方,形成了世界上大多数主要火山,例如美国和加拿大的喀斯喀特火山或日本富士山,俯冲带也发生了大多数真正的巨型地震和海啸。地球。与飓风等其他灾害不同,几乎所有破坏性地震和许多火山爆发都是在没有事先警告的情况下发生的。科学界已将对导致这些事件的根本过程的研究确定为未来至关重要的、高度优先的需求。新兴技术现在提供了新的方法来实时连续观察火山和地震断层活动的微妙变化,从而揭示灾难发生之前正在发生的情况。例如,现在可以监测近海断层上海床的微小位移,或者测量岩浆在地下移动时火山排放的气体。 这些新技术需要以系统和全面的方式部署,使研究人员能够改变对地震、海啸、火山喷发和山体滑坡的理解。 该研究协调网络(RCN)的主要目标是组织和协调研究俯冲带的地质学家和地球物理学家的活动,以开发下一代观测站和测量。它被称为 SZ4D,或“四个维度的俯冲带”,因为其目标是全面研究地球三维空间以及时间上的构造过程(范围从地震期间的几秒钟到几十年 - 以及更长时间的地质构造)。记录)。在为期三年的时间里,SZ4D RCN 将汇集数十位专家,跨学科界限进行讨论,评估研究的前沿,设计最好的下一代研究,并为实施新的国家研究基础设施制定切实可行的计划。该项目从根本上来说是有组织的——它本身不会进行新的研究,但将作为数百名美国大学研究人员及其国际合作者的中央协调骨干和沟通渠道。 这项工作将按主题组织成小组,解决三个问题:是什么控制着俯冲断层和其他相关危险断层的地震和海啸过程?哪些过程控制着火山何时以及如何喷发?山体滑坡和其他地表灾害与地震和/或长期板块构造活动有何联系? RCN 的主要任务是在活跃于俯冲带研究的研究人员的共识下,制定一个包容性和全面的计划,以协调未来的研究。它将整合知名科学家和早期职业研究人员,包括高级研究生,并将广泛包容科学界。除了网络本身在联系科学家方面的积极影响外,主要产品还将成为美国十年或更长时间国家努力的蓝图:SZ4D 实施计划。这将提供给美国国家科学基金会、美国宇航局和其他机构以及研究界,以指导未来几十年服务科学和社会的潜在重大新举措的计划。俯冲带产生了地球上最具破坏性的地震、火山和山体滑坡灾害,但对这些动态地理环境中控制地震、火山喷发和山体滑坡的发生、时间和强度的基本物理和化学过程仍然严重缺乏批判性的了解。 认识到科学和社会的关键研究需求,美国国家科学基金会于 2016 年赞助了俯冲带观测站研讨会,其中制定了新的时空俯冲带 (SZ4D) 计划的愿景。 SZ4D 研究协调网络 (RCN) 旨在提供这种整合,并在为期三年的高度包容性规划过程中将愿景转化为具体可行的计划,该过程将吸引美国俯冲带研究界以及许多国际合作伙伴的参与。它有两个主要目标:(1) 加强和优先考虑地震和海啸产生断层和火山喷发如何作用的研究的科学和技术挑战,最终目标是制定 SZ4D 实施计划。 (2) 充当多学科研究团队、联邦机构和其他机构不断发展的活动的中央沟通渠道。我们寻求制定解决问题的新策略,例如开发新的海底和火山观测能力、进行社区实验以及规划快速事件响应。俯冲带灾害科学是当今地球科学领域的一项巨大努力,涵盖了大量不同的研究工作,SZ4D 愿景文件明确表明,有必要也有社区愿望来协调和整合研究、技术开发和研究。模型框架,以增加我们对火山爆发、海啸、地震和山体滑坡的预测理解。该 RCN 是将这一愿景转变为统一社区计划的关键一步。 P.I. Tobin 将领导一个由 15 名成员组成的指导委员会,该委员会将负责监督四个工作组,以制定 SZ4D 实施计划。 RCN 将通过网站、电子新闻邮件列表和科学会议的公开会议来促进研究界的参与和互动。 RCN工作组将围绕科学问题进行组织,包括:是什么控制着俯冲断层和其他相关危险断层沿线的地震和海啸过程?哪些过程控制着火山何时以及如何喷发?山体滑坡和其他地表灾害与地震和/或长期板块构造活动有何联系? 由于俯冲灾害在全球范围内发生,RCN 将与许多国际合作伙伴合作制定实地研究合作计划。该 RCN 将协调许多地球科学学科的研究人员的努力。该网络以 SZ4D Vision 文件中的蓝图为指导,将向所有研究人员开放,并强调合作、建立共识以及美国和国际上职业生涯早期科学家的参与。当完全实现时,SZ4D 愿景将成为培养新一代多学科地球科学家和公众对俯冲带过程和危险的认识的工具。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和危害进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harold Tobin其他文献

Late Quaternary Surface Displacements on Accretionary Wedge Splay Faults in the Cascadia Subduction Zone: Implications for Megathrust Rupture
卡斯卡迪亚俯冲带增生楔状张开断层的晚第四纪地表位移:对巨型逆冲断裂的影响
  • DOI:
    10.26443/seismica.v2i4.1158
  • 发表时间:
    2024-04-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Ledeczi;Madeleine Lucas;Harold Tobin;Janet Watt;Nathan Miller
  • 通讯作者:
    Nathan Miller
The NZ3D Experiment - Adding a new dimension for understanding slow slip events
NZ3D 实验 - 为理解慢滑移事件添加新维度
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    MGL1801 Participants ;Harold Tobin
  • 通讯作者:
    Harold Tobin
Subducting plate structure and megathrust morphology from deep seismic imaging linked to earthquake rupture segmentation at Cascadia
与卡斯卡迪亚地震破裂分割相关的深部地震成像的俯冲板块结构和巨型逆冲形态
  • DOI:
    10.1126/sciadv.adl3198
  • 发表时间:
    2024-06-07
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    S. Carbotte;Brian Boston;Shuoshuo Han;Brandon Shuck;J. Beeson;J. Canales;Harold Tobin;Nathan Miller;M. Nedimović;A. Tréhu;Michelle K. Lee;Madelaine Lucas;Hanchao Jian;Danqi Jiang;Liam Moser;Chris Anderson;Darren Judd;Jaime Fernandez;Chuck Campbell;Antara Goswami;Rajendra Gahlawat
  • 通讯作者:
    Rajendra Gahlawat
The NZ3D Experiment - Adding a new dimension for understanding slow slip events
NZ3D 实验 - 为理解慢滑移事件添加新维度
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    MGL1801 Participants ;Harold Tobin
  • 通讯作者:
    Harold Tobin
Three-Dimensional Splay Fault Geometry and Implications for Tsunami Generation
三维张开断层几何形状及其对海啸产生的影响
  • DOI:
    10.1126/science.1147195
  • 发表时间:
    2007-11-16
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Gregory F. Moore;Gregory F. Moore;N. Bangs;A. Taira;S. Kuramoto;E. Pangborn;Harold Tobin
  • 通讯作者:
    Harold Tobin

Harold Tobin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harold Tobin', 18)}}的其他基金

Collaborative Research: A new subsurface framework for the Cascadia subduction zone derived from integrated analyses of the CASIE21 long-offset multi-channel seismic experiment
合作研究:根据 CASIE21 长偏移距多道地震实验的综合分析得出卡斯卡迪亚俯冲带的新地下框架
  • 批准号:
    2217468
  • 财政年份:
    2022
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: A community 3D seismic investigation of fault property controls on slow-slip along the Hikurangi megathrust
合作研究:断层属性控制 Hikurangi 巨型逆冲断层沿线慢滑移的社区 3D 地震调查
  • 批准号:
    1558574
  • 财政年份:
    2016
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Imaging plate boundary processes within the Cascadia subduction zone offshore central Washington with open-access marine seismic data
合作研究:利用开放获取的海洋地震数据对华盛顿中部近海卡斯卡迪亚俯冲带内的板块边界过程进行成像
  • 批准号:
    1334322
  • 财政年份:
    2013
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Physical properties of the Alpine Fault, New Zealand: Mechanical and hydrological processes in the brittle fault core and surrounding damage zone
合作研究:新西兰阿尔卑斯断层的物理特性:脆性断层核心及周围损伤区的机械和水文过程
  • 批准号:
    1215711
  • 财政年份:
    2012
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
Characterization of fault zone sediments from borehole logging data at the Nankai Trough (NanTroSEIZE Project)
根据南开海槽钻孔测井数据表征断层带沉积物(NanTroSEIZE 项目)
  • 批准号:
    0948292
  • 财政年份:
    2010
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory Study of the Mechanics and Physical Properties of the Active San Andreas Fault Zone From Phase III SAFOD Cores
合作研究:圣安地列斯活动断层带 III 期 SAFOD 岩心力学和物理性质的实验室研究
  • 批准号:
    0746149
  • 财政年份:
    2008
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: A 3D Seismic Investigation of the Nankai Trough plate boundary system in the Kumano Basin
合作研究:熊野盆地南海海槽板块边界系统的 3D 地震研究
  • 批准号:
    0800653
  • 财政年份:
    2007
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Seismic Velocity, Compaction, and Pore Pressure in Underthrust Sediments, Nankai Subduction Zone
合作研究:南开俯冲带逆冲沉积物中的地震速度、压实和孔隙压力
  • 批准号:
    0800665
  • 财政年份:
    2007
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory Study of the Mechanics and Physical Properties of the San Andreas Fault and 3D SAFOD Volume
合作研究:圣安德烈亚斯断层力学和物理特性和 3D SAFOD 体积的实验室研究
  • 批准号:
    0545548
  • 财政年份:
    2006
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory Study of the Mechanics and Physical Properties of the San Andreas Fault and 3D SAFOD Volume
合作研究:圣安德烈亚斯断层力学和物理特性和 3D SAFOD 体积的实验室研究
  • 批准号:
    0800648
  • 财政年份:
    2006
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant

相似国自然基金

协同控制支撑钢框架自复位与耗能协调机理和韧性优化方法研究
  • 批准号:
    52308195
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向分布式干线协调信号控制的多智能体博弈机制与自适应优化方法研究
  • 批准号:
    52302414
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水稻微纤维相关蛋白MFAP1协调稻瘟病抗性和产量的机制研究
  • 批准号:
    32372553
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
稻鱼共生系统中协调高产种稻与健康养鱼的氮素运筹策略研究
  • 批准号:
    32301374
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“双碳”目标下(考虑)新疆地区风电与火电深度融合与协调运行研究
  • 批准号:
    72361033
  • 批准年份:
    2023
  • 资助金额:
    26 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Research Coordination Network (RCN) for Privacy Preserving Data Sharing and Analytics
用于隐私保护数据共享和分析的研究协调网络 (RCN)
  • 批准号:
    2413978
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
RCN-SC: Research Coordination Network for Design and Testing of Neuromorphic Integrated Circuits
RCN-SC:神经形态集成电路设计和测试的研究协调网络
  • 批准号:
    2332166
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
RCN: The Macrosystems Ecology For All (MEFA) Research Coordination Network
RCN:全民宏观系统生态 (MEFA) 研究协调网络
  • 批准号:
    2213541
  • 财政年份:
    2022
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
RCN-UBE: San Francisco Bay Research Coordination Network for Student Opportunities in Avian Research to enhance STEM education and assess human impacts on avian biodiversity
RCN-UBE:旧金山湾研究协调网络,为学生提供鸟类研究机会,以加强 STEM 教育并评估人类对鸟类生物多样性的影响
  • 批准号:
    2216814
  • 财政年份:
    2022
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
RCN: Intermittent River Research Coordination Network (IRRCN): Integrating Intermittent River Ecology and Hydrology
RCN:间歇性河流研究协调网络(IRRCN):整合间歇性河流生态学和水文学
  • 批准号:
    2207232
  • 财政年份:
    2021
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了