EAGER SitS: Underground Radio Frequency Wireless Network for Measuring Soil Moisture over Large Spatial Scales
EAGER SitS:用于测量大空间范围土壤湿度的地下射频无线网络
基本信息
- 批准号:1841650
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ensuring adequate food and water resources for an increasing population is one of the major challenges of the 21st century. Our abilities to do this are highly dependent on how efficiently soil and water natural resources are managed. In addition, water stored in the soil changes considerably over space and time, and it is difficult to measure these variations. This is important because water variations in soil reservoirs affect the Earth's climate system, have large influences on cloud formation and precipitation, and affect utilization of the Sun's energy. An ability to accurately measure soil water content variations over the landscape will enable us to improve agricultural yields, increase food security, better manage water from rainfall (particularly intensive storms), which is important in urban planning and management. The proposed research work will create an inexpensive, wireless, scalable, fully buried system for frequent measurements of soil water in field environments by using underground radio frequency (RF) transmissions. The research brings together scientific expertise from different disciplines, thus enabling collaboration among soil scientists, engineers, and computer scientists to create an "internet-of-things" for ultimate use in managing our limited water and soil resources and helping ensure food security and societal well-being. Soil water is one of the most important factors that affects plant productivity. One of the grand challenges in soil moisture monitoring is to capture the natural heterogeneity of the soil-hydrological system at scales of 1 to 1000 m2. This intermediate scale between point-scale and available remote sensing measurement scales is important for determining impacts on ecosystem services as well as for improving the use of water resources with environmentally sustainable management practices. Currently, there are few methods for scaling soil moisture from very limited numbers of point-scale measurements to larger scales (field, watershed to regional). As a result, errors and biases are introduced in land surface, hydrological, and vegetation models, and in determining soil saturation and rainfall-runoff responses in catchments. It also handicaps the development of precision and sustainable agriculture. Our objectives are to explore the development of an inexpensive, wireless, scalable, fully buried sensor network system using underground radio frequency (RF) transmission for measurements of soil moisture over 1 to 1000 m2 spatial scales and high temporal resolution and to evaluate the potential for this technology to serve as an accurate sensor in soils. This technology, if successful, could enable soil scientists to gain a better understanding of the complex soil system, its dynamics, and its biological, chemical, and physical processes. We will use the attenuation of RF signal that propagate inside soil to infer water content in the soil column above the sensor. In this project, we will create a wireless cyberphysical sensor network with approximately 40 nodes and implement it at a field site in Illinois with highly-characterized soils for evaluation of concepts. Network development includes hardware, firmware, and user interface. The RF nodes will be buried in the field at about 25 cm deep to sense the water content between the RF node and the soil surface. Data analysis will focus on the correlation between soil moisture and changes in the wireless signal strength transmission. Other factors, such as plant canopy height and root conditions, will be included in machine learning algorithms to establish a robust model. The cyberphysical sensing network will be relevant to many scientific and engineering applications, including use by hydrometeorologists interested in land-atmosphere interactions, by hydrologists for determining soil saturation for agricultural purposes, drought monitoring, irrigation scheduling, and flash flood forecasting, by water supply managers, and by scientists involved in weather and climate research. This research has potential to influence development of new sensing technologies in the future. The highly multidisciplinary nature of the research will bring together soil scientists, computer scientists, and research engineers to explore development of a novel "internet of things" for use in managed and unmanaged soils.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
确保人口增加是21世纪的主要挑战之一。我们这样做的能力高度依赖于土壤和水自然资源的高效管理。此外,在土壤中存储的水在空间和时间上发生了很大变化,很难测量这些变化。这很重要,因为土壤储层的水变化会影响地球的气候系统,对云形成和降水产生很大影响,并影响太阳能量的利用。准确测量景观土壤含水量变化的能力将使我们能够提高农业产量,提高粮食安全,更好地管理降雨(尤其是密集风暴)的水,这在城市规划和管理中很重要。拟议的研究工作将创建一个廉价,无线,可扩展的,完全掩埋的系统,用于使用地下射频(RF)传输在现场环境中频繁测量土壤水。这项研究汇集了来自不同学科的科学专业知识,从而使土壤科学家,工程师和计算机科学家之间的合作能够创建一个“贸易Internet”,以最终用于管理我们有限的水和土壤资源,并帮助确保粮食安全和社会福利。土壤水是影响植物生产率的最重要因素之一。土壤水分监测的巨大挑战之一是在1至1000 m2的尺度上捕获土壤流水系统的自然异质性。点尺度和可用遥感测量量表之间的这种中间量表对于确定对生态系统服务的影响以及通过环境可持续的管理实践来改善水资源的使用至关重要。当前,很少有方法可以将土壤水分从非常有限的点尺度测量到较大的尺度(场,分水岭到区域)。结果,在陆地表面,水文和植被模型中引入了错误和偏见,并在确定集水区中的土壤饱和度和降雨量的反应时。它还障碍了精确和可持续农业的发展。我们的目标是探索使用地下射频(RF)传输的廉价,无线,可扩展,完全掩埋的传感器网络系统的开发,以测量超过1至1000 m2的空间尺度和高时间分辨率的土壤水分,并评估潜在的潜力这项技术可作为土壤中准确的传感器。如果成功的话,这项技术可以使土壤科学家能够更好地了解复杂的土壤系统,其动态以及其生物学,化学和物理过程。我们将使用RF信号的衰减,该信号在土壤内部传播,以推断传感器上方的土壤柱中的水含量。在这个项目中,我们将创建一个带有大约40个节点的无线网络物理传感器网络,并在伊利诺伊州的现场现场实施,并具有高度表征的土壤以评估概念。网络开发包括硬件,固件和用户界面。 RF节点将在大约25厘米深的田野中埋在现场,以感知RF节点和土壤表面之间的水含量。数据分析将集中于土壤水分与无线信号强度传输变化之间的相关性。其他因素(例如植物冠层高度和根系状况)将包括在机器学习算法中以建立强大的模型。网络物理传感网络将与许多科学和工程应用有关,包括水文学家感兴趣的水力气学家使用水文学家,水文学家通过水的供应管理者来确定土壤饱和,以确定土壤饱和,干旱监测,灌溉计划和洪水泛滥的预测。 ,以及参与天气和气候研究的科学家。这项研究有可能影响未来新的传感技术的发展。这项研究的高度多学科性质将汇集土壤科学家,计算机科学家和研究工程师,以探索用于托管和未管理土壤中的新颖的“物联网”的开发。该奖项反映了NSF的法定任务,并被认为值得一提通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roser Matamala Paradeda其他文献
Roser Matamala Paradeda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
EAGER SitS: Quantifying the value of information for sensor placements to improve soil signals for agricultural water management
EAGER SitS:量化传感器放置信息的价值,以改善农业用水管理的土壤信号
- 批准号:
2427554 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226647 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226648 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226649 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SitS Socializing Soil: Enhancing Community CoOperation with Iterative Sensor Research (S3-ECO-wISeR)
SitS 社交化土壤:通过迭代传感器研究加强社区合作 (S3-ECO-wISeR)
- 批准号:
2226714 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant