CRI: CI-NEW: Trainable Reconfigurable Development Platform for Large-Scale Neuromorphic Cognitive Computing

CRI:CI-NEW:用于大规模神经形态认知计算的可训练可重构开发平台

基本信息

  • 批准号:
    1823366
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Neuromorphic cognitive computing aims at learning to solve complex cognitive tasks by emulating the principles and physical organization of highly efficient and resilient adaptive information processing in the biological brain. Despite over 30 years of development and a recent surge of broad interest across all Science, Technology, Engineering and Mathematics (STEM) disciplines, access to neuromorphic cognitive computing remains mostly limited to a small community of highly trained researchers in the field due to high entry barriers and costs associated with the specialized nature and complex operation of currently available systems. This project will construct and support a general-purpose neuromorphic cognitive computing platform that will be the largest and most versatile realized to date as well as the first to be broadly available and open to the research community at large, for research into new forms of brain-inspired computing that are more effective and more efficient in approaching the cognitive capabilities of the human mind. Targeting wide adoption by a diverse cross-section of users in the broader STEM research community, the platform will feature a natural user interface that shields novice users from the challenges arising in operating and configuring highly specialized neuromorphic hardware, by providing a set of user-friendly software tools maintained by and shared with the user community. Building on extensive existing network and storage infrastructure for user access and data sharing at the San Diego Supercomputer Center, the platform will be hosted and maintained through the Neuroscience Gateway (NSG) Portal, which currently serves over 600 active users in the scientific community.The large-scale neuromorphic platform will serve as a new and unparalleled resource to the Computer and Information Science and Engineering (CISE) research community, addressing a great need for an experimental testbed for research in alternative forms of computing beyond the traditional von Neumann paradigm and the impending physical limits to Moore's Law expansion in the scaling of computing technology. The reconfigurable platform will feature a hierarchically interconnected network of in-memory computing processing nodes that emulates, in real-time, highly flexible neural dynamics (integrate-and-fire, graded, stochastic binary, etc) of up to 128 million neurons with high flexible connectivity and plasticity (spike-timing dependent plasticity, gradient-based deep learning, etc) of up to 32 billion synapses. The system will be capable of biophysical detail in computational neuroscience modeling, as well as high performance and efficiency in on-line adaptive pattern recognition, serving and bringing together both computational neuroscience and computational intelligence communities that have traditionally pursued disparate computational approaches. The user interface of the platform will support software tools and resources for deep learning and run-time optimization in artificial intelligence applications, and for interference of structure and functional connectivity from recorded neural activity in computational neuroscience research, among others. To facilitate greatest scientific and societal impact, the infrastructure will be made available free of charge, on a time-managed shared basis, to any researcher in return for agreeing to share source code and data necessary to replicate results reported in the literature.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经形态认知计算旨在通过模拟生物大脑中高效且有弹性的自适应信息处理的原理和物理组织来学习解决复杂的认知任务。 尽管经过 30 多年的发展,并且最近所有科学、技术、工程和数学 (STEM) 学科都受到了广泛的关注,但由于进入门槛较高,神经形态认知计算的使用仍然主要局限于该领域训练有素的研究人员组成的小社区。与当前可用系统的专业性和复杂操作相关的障碍和成本。 该项目将构建和支持一个通用神经形态认知计算平台,该平台将是迄今为止实现的最大、最通用的平台,也是第一个向广大研究界广泛开放的平台,用于研究新形式的大脑- 启发式计算在接近人类思维的认知能力方面更加有效和高效。 该平台的目标是在更广泛的 STEM 研究社区中被不同领域的用户广泛采用,该平台将采用自然的用户界面,通过提供一组用户界面,保护新手用户免受操作和配置高度专业化的神经形态硬件所带来的挑战。由用户社区维护并与用户社区共享的友好软件工具。 该平台以圣地亚哥超级计算机中心广泛的现有网络和存储基础设施为基础,用于用户访问和数据共享,将通过神经科学网关 (NSG) 门户进行托管和维护,该门户目前为科学界的 600 多名活跃用户提供服务。大型神经拟态平台将成为计算机和信息科学与工程(CISE)研究界的一种新的、无与伦比的资源,满足对超越传统冯诺依曼范式和计算替代形式的研究的实验测试台的巨大需求。摩尔定律在计算技术扩展方面即将面临的物理限制。 该可重构平台将采用内存计算处理节点的分层互连网络,该网络实时模拟多达 1.28 亿个神经元的高度灵活的神经动力学(集成和激发、分级、随机二进制等)。多达 320 亿个突触的灵活连接性和可塑性(依赖于尖峰时序的可塑性、基于梯度的深度学习等)。 该系统将能够提供计算神经科学建模中的生物物理细节,以及在线自适应模式识别中的高性能和高效率,为传统上追求不同计算方法的计算神经科学和计算智能社区提供服务并将其汇集在一起​​。 该平台的用户界面将支持软件工具和资源,用于人工智能应用中的深度学习和运行时优化,以及计算神经科学研究中记录的神经活动的结构和功能连接的干扰等。 为了实现最大的科学和社会影响,基础设施将在时间管理共享的基础上免费提供给任何研究人员,以换取同意共享复制文献中报告的结果所需的源代码和数据。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A 1.52 pJ/Spike Reconfigurable Multimodal Integrate-and-Fire Neuron Array Transceiver
1.52 pJ/Spike 可重构多模态集成发射神经元阵列收发器
Brain-Inspired Learning on Neuromorphic Substrates
神经形态基底上的类脑学习
  • DOI:
    10.1109/jproc.2020.3045625
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    Zenke, Friedemann;Neftci, Emre O.
  • 通讯作者:
    Neftci, Emre O.
Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
内存高效的突触连接,可实现尖峰时间依赖性可塑性
  • DOI:
    10.3389/fnins.2019.00357
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Pedroni, Bruno U.;Joshi, Siddharth;Deiss, Stephen R.;Sheik, Sadique;Detorakis, Georgios;Paul, Somnath;Augustine, Charles;Neftci, Emre O.;Cauwenberghs, Gert
  • 通讯作者:
    Cauwenberghs, Gert
Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning
神经和突触阵列收发器:用于嵌入式学习的类脑计算框架
  • DOI:
    10.3389/fnins.2018.00583
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Detorakis, Georgios;Sheik, Sadique;Augustine, Charles;Paul, Somnath;Pedroni, Bruno U.;Dutt, Nikil;Krichmar, Jeffrey;Cauwenberghs, Gert;Neftci, Emre
  • 通讯作者:
    Neftci, Emre
Neuromorphic Dynamical Synapses with Reconfigurable Voltage-Gated Kinetics
具有可重构电压门控动力学的神经形态动态突触
  • DOI:
    10.1109/tbme.2019.2948809
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wang, Jun;Cauwenberghs, Gert;Broccard, Frederic D.
  • 通讯作者:
    Broccard, Frederic D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gert Cauwenberghs其他文献

Coding in the Auditory Cortex
听觉皮层的编码
  • DOI:
    10.1016/j.clml.2020.11.019
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Srihita Rudraraju;Gert Cauwenberghs
  • 通讯作者:
    Gert Cauwenberghs
1.1 TMACS/mW Load-Balanced Resonant Charge-Recycling Array Processor
1.1 TMACS/mW负载平衡谐振电荷回收阵列处理器
Multi-level, Forming Free, Bulk Switching Trilayer RRAM for Neuromorphic Computing at the Edge
用于边缘神经形态计算的多级、免成型、批量切换三层 RRAM
  • DOI:
    10.48550/arxiv.2310.13844
  • 发表时间:
    2023-10-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaeseoung Park;Ashwani Kumar;Yucheng Zhou;Sangheon Oh;Jeong;Yuhan Shi;Soumil Jain;Gopab;hu Hota;hu;Amelie L. Nagle;Catherine D. Schuman;Gert Cauwenberghs;D. Kuzum
  • 通讯作者:
    D. Kuzum
Kerneltron: Support Vector 'Machine' in Silicon
Kerneltron:硅中的支持向量“机器”
  • DOI:
    10.1007/3-540-45665-1_10
  • 发表时间:
    2002-08-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roman Genov;Gert Cauwenberghs
  • 通讯作者:
    Gert Cauwenberghs
Temporal change threshold detection imager
时间变化阈值检测成像仪

Gert Cauwenberghs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gert Cauwenberghs', 18)}}的其他基金

Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
  • 批准号:
    2208771
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
PFI:BIC - Unobtrusive Neurotechnology and Immersive Human-Computer Interface for Enhanced Learning
PFI:BIC - 用于增强学习的低调神经技术和沉浸式人机界面
  • 批准号:
    1719130
  • 财政年份:
    2017
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
  • 批准号:
    1317407
  • 财政年份:
    2013
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
EFRI-M3C: Distributed Brain Dynamics in Human Motor Control
EFRI-M3C:人类运动控制中的分布式大脑动力学
  • 批准号:
    1137279
  • 财政年份:
    2011
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SGER: Wireless EEG Brain Interface for Extended Interactive Learning
SGER:用于扩展交互式学习的无线脑电图脑接口
  • 批准号:
    0847752
  • 财政年份:
    2008
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Acoustic Target Identification and Localization
声学目标识别和定位
  • 批准号:
    0434161
  • 财政年份:
    2004
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Trainable Visual Aids for Object Detection and Identification
用于物体检测和识别的可训练视觉辅助工具
  • 批准号:
    0209289
  • 财政年份:
    2002
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Microscale Adaptive Optical Wavefront Correction
微尺度自适应光学波前校正
  • 批准号:
    0010026
  • 财政年份:
    2001
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CAREER: Engineering Research and Education in Analog VLSI Parallel Computational Systems
职业:模拟 VLSI 并行计算系统的工程研究和教育
  • 批准号:
    9702346
  • 财政年份:
    1997
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant

相似国自然基金

基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
  • 批准号:
    82374375
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
ci-Eln促进亲本基因Eln介导的缺氧肺动脉平滑肌细胞增殖的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
森林垂直分层LAI和CI时空变异特征、LiDAR遥感反演与验证研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
通过单细胞转录组测序揭示Wolbachia诱导果蝇CI的分子机制
  • 批准号:
    32170497
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
近邻星系中[CI]线作为新分子气体质量探针的观测研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRI: CI-NEW: Collaborative Research: Constructing a Community-Wide Software Architecture Infrastructure
CRI:CI-NEW:协作研究:构建社区范围的软件架构基础设施
  • 批准号:
    1823246
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CRI: CI-NEW: Collaborative Research: Constructing a Community-Wide Software Architecture Infrastructure
CRI:CI-NEW:协作研究:构建社区范围的软件架构基础设施
  • 批准号:
    1823354
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CRI: CI-New: Collaborative Research: NJR: A Normalized Java Resource
CRI:CI-New:协作研究:NJR:标准化 Java 资源
  • 批准号:
    1823360
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CRI: CI-New: A Community Benchmarking Infrastructure for Birectional Reflectance Distribution Functions
CRI:CI-New:双向反射率分布函数的社区基准基础设施
  • 批准号:
    1823154
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CRI: CI-NEW: Collaborative Research: Constructing a Community-Wide Software Architecture Infrastructure
CRI:CI-NEW:协作研究:构建社区范围的软件架构基础设施
  • 批准号:
    1823214
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了