BIGDATA: F: Compositional Learning, Maps and Transfer: Statistical and Machine Learning on Collections of Data Sets
BIGDATA:F:组合学习、地图和迁移:数据集集合的统计和机器学习
基本信息
- 批准号:1837991
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the landmarks of human intelligence is the ability to not only find solutions to hard problems, but to learn from past experiences and accumulate knowledge that may be (partially) transferred for quickly solving new problems. This project will develop novel foundational techniques for learning compositional rules, from collections of data sets and machine learning problems. The building blocks that the investigator will develop enable sharing of learning across multiple data sets and modalities. A first building block will enable machine learning algorithms to store solutions to past problems and use maps and abstractions to transfer knowledge to new problems. This requires efficient techniques for learning maps, how to compose them to enable knowledge transfer, all in a way that is compatible with the representation of the problems and their solutions, which also need to be automatically learned. These ideas will be tested on problems ranging from object and pattern recognition of images to behavior of interacting agent systems, from fusing data sets acquired with different sensors to controlling virtual and real agents. This project will provide general, foundational results in machine learning, which can be applied to applications in virtually any domain of human endeavor. The investigator will develop new techniques focused on representation and transfer learning, in particular: (i) Compositional Learning: the ability to learn and factorize through composition maps between data sets, and of functions (for classification and regression tasks) on data sets (e.g. the task f may be learned by using the map h to one data set on which learning already occurred and the already-learned function g on that data), in order to enhance both learning rates, knowledge extraction and transfer across data sets and data types; (ii) Map Learning: the ability to efficiently learn, represent, store, recall and apply maps between complex data sets, possibly of different modalities; but also learn maps that transform, at least approximately, one task into another, and transfer knowledge from one task to another; (iii) Representation Learning: the ability to learn how to efficiently represent, store and recall complex data sets, across multiple sensor modalities, and across different levels of abstractions -- for example, learning efficient representations of data from multiple types of sensors, learning of classifiers and regression functions, or learning interaction kernels in agent-based systems, as well as transfer those functions across sensor modalities, data sets, dynamical systems. While advancing current state of art techniques in each of these learning abilities, the research will tackle applications in learning invariances and performing object recognition tasks in images, detecting whether objects in an image are new or known, learn interaction rules from observing trajectories of interacting agent systems, and implement the ideas of compositional learning in the context of learning systems both virtual (for examples, using the OpenAI challenges) and real (for example, using robots), on sequences of tasks of increasing difficulty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类智能的里程碑之一是不仅能够找到难题的解决方案,而且能够从过去的经验中学习并积累可以(部分)转移以快速解决新问题的知识。该项目将开发新颖的基础技术,用于从数据集和机器学习问题的集合中学习组合规则。研究者将开发的构建模块能够跨多个数据集和模式共享学习。第一个构建块将使机器学习算法能够存储过去问题的解决方案,并使用映射和抽象将知识转移到新问题。这需要有效的学习地图技术,以及如何组合它们以实现知识迁移,所有这些都以与问题及其解决方案的表示兼容的方式进行,这些也需要自动学习。这些想法将在从图像的对象和模式识别到交互代理系统的行为、从融合使用不同传感器获取的数据集到控制虚拟和真实代理等问题上进行测试。 该项目将提供机器学习的一般性、基础性结果,可应用于人类活动的几乎任何领域的应用。研究者将开发专注于表示和迁移学习的新技术,特别是:(i)组合学习:通过数据集之间的组合图以及数据集上的函数(用于分类和回归任务)进行学习和分解的能力(例如,任务 f 可以通过使用已经发生学习的一个数据集的映射 h 以及该数据上已经学习的函数 g 来学习,以提高学习率、知识提取以及跨数据集和数据类型的迁移; (ii) 地图学习:有效学习、表示、存储、回忆和应用可能具有不同模式的复杂数据集之间的地图的能力;还可以学习至少近似地将一项任务转换为另一项任务的地图,并将知识从一项任务转移到另一项任务; (iii) 表示学习:学习如何跨多种传感器模式、跨不同抽象层次有效表示、存储和调用复杂数据集的能力——例如,学习来自多种类型传感器的数据的有效表示、学习分类器和回归函数,或学习基于代理的系统中的交互内核,以及跨传感器模式、数据集、动态系统传输这些函数。 在推进每种学习能力中当前最先进技术的同时,该研究将解决学习不变性和在图像中执行对象识别任务的应用,检测图像中的对象是新的还是已知的,通过观察交互代理的轨迹来学习交互规则系统,并在虚拟(例如,使用 OpenAI 挑战)和真实(例如,使用机器人)学习系统的背景下,针对难度不断增加的任务序列,实施组合学习的思想。该奖项反映了 NSF 的法定使命并被认为值得通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning by Active Nonlinear Diffusion
- DOI:10.3934/fods.2019012
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:M. Maggioni;James M. Murphy
- 通讯作者:M. Maggioni;James M. Murphy
Learning Interaction Kernels in Stochastic Systems of Interacting Particles from Multiple Trajectories
学习多轨迹相互作用粒子随机系统中的相互作用核
- DOI:10.1007/s10208-021-09521-z
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Lu, Fei;Maggioni, Mauro;Tang, Sui
- 通讯作者:Tang, Sui
Learning Interaction Kernels for Agent Systems on Riemannian Manifolds
学习黎曼流形上代理系统的交互内核
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mauro Maggioni, Jason J
- 通讯作者:Mauro Maggioni, Jason J
Nonparametric inference of interaction laws in systems of agents from trajectory data
从轨迹数据中非参数推断智能体系统中的相互作用规律
- DOI:10.1073/pnas.1822012116
- 发表时间:2019
- 期刊:
- 影响因子:11.1
- 作者:Lu, Fei;Zhong, Ming;Tang, Sui;Maggioni, Mauro
- 通讯作者:Maggioni, Mauro
Conditional regression for single-index models
单指标模型的条件回归
- DOI:10.3150/22-bej1482
- 发表时间:2022
- 期刊:
- 影响因子:1.5
- 作者:Lanteri, Alessandro;Maggioni, Mauro;Vigogna, Stefano
- 通讯作者:Vigogna, Stefano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mauro Maggioni其他文献
Mauro Maggioni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mauro Maggioni', 18)}}的其他基金
ATD: Estimation and Anomaly Detection for high-dimensional Data, Maps and Dynamic Processes
ATD:高维数据、地图和动态过程的估计和异常检测
- 批准号:
1737984 - 财政年份:2017
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
- 批准号:
1756892 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Proposal: SI2-CHE: ExTASY Extensible Tools for Advanced Sampling and analYsis
合作提案:SI2-CHE:用于高级采样和分析的 ExTASY 可扩展工具
- 批准号:
1708353 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
- 批准号:
1708553 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
- 批准号:
1708602 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
- 批准号:
1724979 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
- 批准号:
1546392 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
- 批准号:
1522651 - 财政年份:2015
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
- 批准号:
1320655 - 财政年份:2013
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Proposal: SI2-CHE: ExTASY Extensible Tools for Advanced Sampling and analYsis
合作提案:SI2-CHE:用于高级采样和分析的 ExTASY 可扩展工具
- 批准号:
1265920 - 财政年份:2013
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
相似国自然基金
自动编舞和作曲的对偶学习及其应用相关技术研究
- 批准号:62302018
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
作曲家音乐创作的脑机制研究
- 批准号:31600798
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
自动作曲技术及其质量评估方法的研究
- 批准号:61272238
- 批准年份:2012
- 资助金额:36.0 万元
- 项目类别:面上项目
基于基因表达式编程的动漫情感化配乐技术研究
- 批准号:61070075
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
典型零件工作曲面动态造型拟合原理的研究
- 批准号:59605015
- 批准年份:1996
- 资助金额:9.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403074 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403075 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Analysis of latent variables in deep learning and their compositional methods
深度学习中的潜变量分析及其构成方法
- 批准号:
23K11266 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards Continual and Compositional Learning in the Visual World
走向视觉世界的持续和组合学习
- 批准号:
RGPIN-2021-04104 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Discovery Grants Program - Individual
Compositional recurrent neural networks for meta reinforcement learning
用于元强化学习的组合循环神经网络
- 批准号:
576396-2022 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's