BIGDATA: F: Compositional Learning, Maps and Transfer: Statistical and Machine Learning on Collections of Data Sets

BIGDATA:F:组合学习、地图和迁移:数据集集合的统计和机器学习

基本信息

  • 批准号:
    1837991
  • 负责人:
  • 金额:
    $ 70万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

One of the landmarks of human intelligence is the ability to not only find solutions to hard problems, but to learn from past experiences and accumulate knowledge that may be (partially) transferred for quickly solving new problems. This project will develop novel foundational techniques for learning compositional rules, from collections of data sets and machine learning problems. The building blocks that the investigator will develop enable sharing of learning across multiple data sets and modalities. A first building block will enable machine learning algorithms to store solutions to past problems and use maps and abstractions to transfer knowledge to new problems. This requires efficient techniques for learning maps, how to compose them to enable knowledge transfer, all in a way that is compatible with the representation of the problems and their solutions, which also need to be automatically learned. These ideas will be tested on problems ranging from object and pattern recognition of images to behavior of interacting agent systems, from fusing data sets acquired with different sensors to controlling virtual and real agents. This project will provide general, foundational results in machine learning, which can be applied to applications in virtually any domain of human endeavor. The investigator will develop new techniques focused on representation and transfer learning, in particular: (i) Compositional Learning: the ability to learn and factorize through composition maps between data sets, and of functions (for classification and regression tasks) on data sets (e.g. the task f may be learned by using the map h to one data set on which learning already occurred and the already-learned function g on that data), in order to enhance both learning rates, knowledge extraction and transfer across data sets and data types; (ii) Map Learning: the ability to efficiently learn, represent, store, recall and apply maps between complex data sets, possibly of different modalities; but also learn maps that transform, at least approximately, one task into another, and transfer knowledge from one task to another; (iii) Representation Learning: the ability to learn how to efficiently represent, store and recall complex data sets, across multiple sensor modalities, and across different levels of abstractions -- for example, learning efficient representations of data from multiple types of sensors, learning of classifiers and regression functions, or learning interaction kernels in agent-based systems, as well as transfer those functions across sensor modalities, data sets, dynamical systems. While advancing current state of art techniques in each of these learning abilities, the research will tackle applications in learning invariances and performing object recognition tasks in images, detecting whether objects in an image are new or known, learn interaction rules from observing trajectories of interacting agent systems, and implement the ideas of compositional learning in the context of learning systems both virtual (for examples, using the OpenAI challenges) and real (for example, using robots), on sequences of tasks of increasing difficulty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类智能的里程碑之一是能够找到解决难题的解决方案,还可以从过去的经验中学习并积累(部分)(部分)转移以快速解决新问题的知识。该项目将从数据集和机器学习问题的集合中开发出用于学习组成规则的新颖基础技术。研究者将开发的基础能够在多个数据集和方式上共享学习。第一个构建块将使机器学习算法能够存储解决方案,以使过去的问题并使用地图和抽象将知识转移到新问题。这需要有效的技术来学习地图,如何构成它们以启用知识转移,这都是与问题及其解决方案兼容的方式,这些方式也需要自动学习。这些想法将经过有关从对象和模式识别到相互作用代理系统的行为的问题,从与不同传感器获取的数据集到控制虚拟和真实代理。 该项目将在机器学习中提供一般的基础结果,该项目几乎可以应用于人类努力的任何领域中的应用。 The investigator will develop new techniques focused on representation and transfer learning, in particular: (i) Compositional Learning: the ability to learn and factorize through composition maps between data sets, and of functions (for classification and regression tasks) on data sets (e.g. the task f may be learned by using the map h to one data set on which learning already occurred and the already-learned function g on that data), in order to enhance both learning rates, knowledge extraction and transfer across data集合和数据类型; (ii)地图学习:有效学习,代表,存储,回忆和应用复杂数据集之间的地图的能力,可能具有不同的方式;但是,还要学习将至少一个任务转换为另一个任务的地图,并将知识从一个任务转移到另一个任务; (iii)表示学习:学习如何有效地表示,存储和回忆复杂的数据集,跨多种传感器方式以及跨不同级别的抽象跨度(例如,从多种类型的传感器学习,分类器和回归功能学习的数据有效地表示数据的有效表示,或基于代理的系统中的学习交互作用系统,以及这些功能跨传感器模态模态,数据集,数据集,动态,动态,动态,动态,动态,动态,动态。 While advancing current state of art techniques in each of these learning abilities, the research will tackle applications in learning invariances and performing object recognition tasks in images, detecting whether objects in an image are new or known, learn interaction rules from observing trajectories of interacting agent systems, and implement the ideas of compositional learning in the context of learning systems both virtual (for examples, using the OpenAI challenges) and real (for example, using robots), on sequences of该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响标准通过评估来支持的。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning by Active Nonlinear Diffusion
  • DOI:
    10.3934/fods.2019012
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Maggioni;James M. Murphy
  • 通讯作者:
    M. Maggioni;James M. Murphy
Learning Interaction Kernels in Stochastic Systems of Interacting Particles from Multiple Trajectories
学习多轨迹相互作用粒子随机系统中的相互作用核
Learning Interaction Kernels for Agent Systems on Riemannian Manifolds
学习黎曼流形上代理系统的交互内核
Nonparametric inference of interaction laws in systems of agents from trajectory data
从轨迹数据中非参数推断智能体系统中的相互作用规律
Conditional regression for single-index models
单指标模型的条件回归
  • DOI:
    10.3150/22-bej1482
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Lanteri, Alessandro;Maggioni, Mauro;Vigogna, Stefano
  • 通讯作者:
    Vigogna, Stefano
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mauro Maggioni其他文献

Mauro Maggioni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mauro Maggioni', 18)}}的其他基金

ATD: Estimation and Anomaly Detection for high-dimensional Data, Maps and Dynamic Processes
ATD:高维数据、地图和动态过程的估计和异常检测
  • 批准号:
    1737984
  • 财政年份:
    2017
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
  • 批准号:
    1756892
  • 财政年份:
    2016
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Proposal: SI2-CHE: ExTASY Extensible Tools for Advanced Sampling and analYsis
合作提案:SI2-CHE:用于高级采样和分析的 ExTASY 可扩展工具
  • 批准号:
    1708353
  • 财政年份:
    2016
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
  • 批准号:
    1708553
  • 财政年份:
    2016
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
  • 批准号:
    1708602
  • 财政年份:
    2016
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
  • 批准号:
    1724979
  • 财政年份:
    2016
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
  • 批准号:
    1546392
  • 财政年份:
    2016
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
  • 批准号:
    1522651
  • 财政年份:
    2015
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
  • 批准号:
    1320655
  • 财政年份:
    2013
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Proposal: SI2-CHE: ExTASY Extensible Tools for Advanced Sampling and analYsis
合作提案:SI2-CHE:用于高级采样和分析的 ExTASY 可扩展工具
  • 批准号:
    1265920
  • 财政年份:
    2013
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant

相似国自然基金

大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
  • 批准号:
    32371605
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
根系周转及其分泌物组成主导酸化森林土壤碳积累的机理
  • 批准号:
    32301564
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
地质脂类记录的阿巴拉契盆地晚泥盆世海洋微生物组成对生态危机事件的响应
  • 批准号:
    42302348
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于植硅石独特矿物组成构建纳米粒子破乳剂及其对原油乳液的破乳行为
  • 批准号:
    52364027
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
洋中脊玄武岩和近洋脊海山玄武岩的锌同位素组成与地幔不均一性研究
  • 批准号:
    42376051
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
  • 批准号:
    2403074
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
  • 批准号:
    2403075
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Analysis of latent variables in deep learning and their compositional methods
深度学习中的潜变量分析及其构成方法
  • 批准号:
    23K11266
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards Continual and Compositional Learning in the Visual World
走向视觉世界的持续和组合学习
  • 批准号:
    RGPIN-2021-04104
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Discovery Grants Program - Individual
Compositional recurrent neural networks for meta reinforcement learning
用于元强化学习的组合循环神经网络
  • 批准号:
    576396-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了