Assessment of predictions of hydrologic function based on aquatic DNA fragments

基于水生 DNA 片段的水文功能预测评估

基本信息

  • 批准号:
    1836768
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

For the safety and security of the public, it is important to be able to estimate how much water flows through rivers and streams at locations where no gauges of flow exist. In these places, the collection of some other type of information can be remarkably useful in understanding flow patterns. This project investigates how fragments of biological material can be used in predicting river and stream flows. The biological material investigated in this project is the deoxyribonucleic acid (DNA) of microbes found within water samples. This material can be collected and analyzed quickly, easily, and inexpensively. By using advanced biological techniques, the DNA found in streams can be translated into the relative abundance of different types of microbes. This project is based on the understanding that different environmental conditions, including flow patterns in rivers, cause different populations of microbes to become more or less abundant. This project supports an interdisciplinary group of faculty and students to develop new tools that relate stream and river microbes to hydrologic flow patterns. The project partners with a local organization focused on connecting under-represented communities with science professionals.This project focuses on the collection and sequencing of streamwater DNA at a suite of long-term gauging stations spanning a range ecohydrologic conditions across the Pacific Northwest. Using 16s rRNA amplicon sequencing, the relative abundance of different microbial community members is quantified at each location, and patterns in community composition is related to river flows with machine learning techniques. These methods are then extended to regional and national level datasets of streamwater microbiome composition to determine the macroscale hydrologic information contained within streamwater DNA at different scales. For the duration of this project, a team consisting of high-school, undergraduate, and graduate students is engaged in advanced biological, hydrologic, and machine learning techniques to investigate connections between streamwater DNA and watershed function. Both hydrologic and microbial tools and techniques developed through this project will be disseminated to the wider community in a variety of forms, including traditional scholarly outlets and as open-source interactive electronic text for general education about hydrology. This project includes training in science, technology, engineering, and mathematics (STEM) for students from high school to the PhD level. The project partners with a local organization focused on connecting under-represented communities with STEM professionals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了公众的安全和保障,在没有流量计的地方能够估计流经河流和溪流的水量非常重要。在这些地方,收集一些其他类型的信息对于理解流动模式非常有用。该项目研究如何使用生物材料碎片来预测河流和溪流流量。该项目研究的生物材料是水样中发现的微生物的脱氧核糖核酸(DNA)。这种材料可以快速、轻松且廉价地收集和分析。通过使用先进的生物技术,溪流中发现的 DNA 可以转化为不同类型微生物的相对丰度。该项目基于这样的理解:不同的环境条件(包括河流的流动模式)会导致不同微生物种群的丰富度增加或减少。该项目支持由教师和学生组成的跨学科小组开发将溪流和河流微生物与水文流动模式联系起来的新工具。该项目与当地一个组织合作,致力于将代表性不足的社区与科学专业人员联系起来。该项目的重点是在横跨太平洋西北地区一系列生态水文条件的一系列长期测量站中收集溪流 DNA 并进行测序。使用 16s rRNA 扩增子测序,可以量化每个位置不同微生物群落成员的相对丰度,并通过机器学习技术将群落组成模式与河流流量相关。然后将这些方法扩展到区域和国家级的河水微生物组组成数据集,以确定不同尺度的河水 DNA 中包含的宏观水文信息。在该项目期间,一个由高中生、本科生和研究生组成的团队致力于先进的生物学、水文和机器学习技术,以研究溪流 DNA 与流域功能之间的联系。通过该项目开发的水文和微生物工具和技术将以各种形式传播到更广泛的社区,包括传统的学术渠道和用于水文学普通教育的开源交互式电子文本。该项目包括为高中至博士级别的学生提供科学、技术、工程和数学 (STEM) 方面的培训。该项目与当地组织合作,致力于将代表性不足的社区与 STEM 专业人士联系起来。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Roles of Microbes in Stream Restorations
  • DOI:
    10.1007/s00248-023-02179-w
  • 发表时间:
    2023-01-25
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Hilderbrand,Robert H.;Bambakidis,Ted;Crump,Byron C.
  • 通讯作者:
    Crump,Byron C.
River Microbiome Composition Reflects Macroscale Climatic and Geomorphic Differences in Headwater Streams
河流微生物组组成反映了源头溪流的宏观气候和地貌差异
  • DOI:
    10.3389/frwa.2020.574728
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    URycki, Dawn R.;Good, Stephen P.;Crump, Byron C.;Chadwick, Jessica;Jones, Gerrad D.
  • 通讯作者:
    Jones, Gerrad D.
Machine Learning Applications for Chemical Fingerprinting and Environmental Source Tracking Using Non-target Chemical Data
  • DOI:
    10.1021/acs.est.1c06655
  • 发表时间:
    2022-04-05
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Davila-Santiago, Emmanuel;Shi, Cheng;Jones, Gerrad D.
  • 通讯作者:
    Jones, Gerrad D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Good其他文献

Stephen Good的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Good', 18)}}的其他基金

Collaborative Research: MSB-ENSA: Leveraging NEON to Build a Predictive Cross-scale Theory of Ecosystem Transpiration
合作研究:MSB-ENSA:利用 NEON 构建生态系统蒸腾的预测性跨尺度理论
  • 批准号:
    1802885
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于气象水文耦合的径流集合预测及多重不确定性缓解研究
  • 批准号:
    42307558
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于滑带土水文动态响应的黄土滑坡地貌演化预测模型研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
流域水文过程的复杂动力学特征及可预测性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水文与水动力耦合模型理论及在山区流域洪涝预测中的应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于数字土壤制图的土壤水文功能预测制图方法
  • 批准号:
    42071072
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Understanding how predictions modulate visual perception
了解预测如何调节视觉感知
  • 批准号:
    DE240100327
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Early Career Researcher Award
The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change
第一个致力于了解热带湿地甲烷排放以改进气候变化预测的环境数字孪生
  • 批准号:
    MR/X033139/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Fellowship
A paradigm shift for predictions of freshwater harmful cyanobacteria blooms
淡水有害蓝藻水华预测的范式转变
  • 批准号:
    DP240100269
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Projects
Mud pumping under rail tracks: from Micromechanics to Predictions
铁轨下的泥浆泵送:从微观力学到预测
  • 批准号:
    DP240102765
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了