Donor Electron Spins in Direct Bandgap Semiconductors for Quantum Networks
用于量子网络的直接带隙半导体中的供体电子自旋
基本信息
- 批准号:1820614
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum information networks are expected to enable breakthroughs in computation for optimization problems, encryption-breaking, and materials simulation, as well as realize fundamentally secure communication. Quantum defects in crystals have been shown to exhibit some of the characteristics needed to realize a scalable quantum network; however finding a system that simultaneously exhibits all of the requisite optical and quantum properties remains challenging. Based on promising preliminary results, single donor defects in zinc oxide (ZnO) may satisfy these criteria. This project is to demonstrate single ZnO donor creation and detection with complete control and characterization of the donor electron and nucleus. The goal is to determine the outlook of this system for scalable quantum information applications. In addition, the study of single donor impurities in ZnO may lead to new techniques for studying dopants in semiconductors and will train a diverse group of graduate and undergraduate students in quantum optics and nanotechnology, preparing them for careers in national laboratories, industry, and academia.Defect-based quantum information processing is attractive due to the potential for device integration, the possibility of spin-photon transfer, and the long quantum coherence time in high-purity crystals. For defect systems with optical radiation, measurement-based protocols can be utilized to create quantum networks between non-interacting, remotely separated qubits. This project will investigate a defect system with favorable optical properties, i.e. the donor system in ZnO, which has homogeneous optical transitions and near-unity radiative efficiency in the zero phonon line. Prior studies in an ensemble of donors showed the potential for long coherence times of the donor system if isotopically purified ZnO crystal is available. Here, different techniques will be utilized to isolate single donors: growth of single ZnO nanowires with small diameters, and nano-scale masking or focused ion beam etching combined with epitaxial ZnO layers of low donor density. The isolation of single donors will be confirmed by a photon autocorrelation measurement. Optical pumping and microwave pulses for high-fidelity coherent control will be used to study the optical and spin (electron and nuclear) coherence properties of single ZnO donors, testing the suitability of this system as a qubit candidate. Due to the effective mass nature of the donor, it may be possible to generalize the quantum properties found in ZnO to the entire class of donors in direct band gap semiconductors, furthering the impact of this research.This project is jointly funded by the Quantum Information Science (QIS) Program in the Physics Division in the Directorate for Mathematical and Physical Sciences, and the Condensed Matter Physics (CMP) Program in the Division of Materials Science in the Directorate for Mathematical and Physical Sciences, and the Electronics, Photonics and Magnetic Devices (EPMD) Program in the Division of Electrical, Communications and Cyber Systems Division in the Engineering Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息网络有望在优化问题、加密破解和材料模拟计算方面取得突破,并实现从根本上安全的通信。晶体中的量子缺陷已被证明表现出实现可扩展量子网络所需的一些特性;然而,找到一个同时表现出所有必需的光学和量子特性的系统仍然具有挑战性。基于有希望的初步结果,氧化锌 (ZnO) 中的单施主缺陷可能满足这些标准。该项目旨在演示单个 ZnO 供体的创建和检测,以及对供体电子和原子核的完全控制和表征。目标是确定该系统对于可扩展量子信息应用的前景。此外,对 ZnO 中单施主杂质的研究可能会带来研究半导体掺杂剂的新技术,并将在量子光学和纳米技术方面培养多元化的研究生和本科生,为他们在国家实验室、工业界和学术界的职业生涯做好准备基于缺陷的量子信息处理由于器件集成的潜力、自旋光子转移的可能性以及高纯度晶体中的长量子相干时间而具有吸引力。对于具有光辐射的缺陷系统,可以利用基于测量的协议在非相互作用、远程分离的量子位之间创建量子网络。该项目将研究具有良好光学特性的缺陷系统,即 ZnO 中的供体系统,其在零声子线中具有均匀的光学跃迁和接近一致的辐射效率。先前对供体集合的研究表明,如果有同位素纯化的 ZnO 晶体,供体系统就有可能实现较长的相干时间。在这里,将利用不同的技术来隔离单个施主:小直径的单个 ZnO 纳米线的生长,以及纳米级掩模或聚焦离子束蚀刻与低施主密度的外延 ZnO 层相结合。单个供体的隔离将通过光子自相关测量来确认。用于高保真相干控制的光泵浦和微波脉冲将用于研究单个 ZnO 供体的光学和自旋(电子和核)相干特性,测试该系统作为量子位候选者的适用性。 由于施主的有效质量性质,有可能将 ZnO 中发现的量子特性推广到直接带隙半导体中的整个施主类别,从而进一步扩大这项研究的影响。该项目由量子信息联合资助数学和物理科学局物理司的科学(QIS)计划,以及数学和物理科学局材料科学司的凝聚态物理(CMP)计划,以及电子学,工程理事会电气、通信和网络系统部的光子学和磁性器件 (EPMD) 项目。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ensemble spin relaxation of shallow donor qubits in ZnO
ZnO 中浅施主量子位的系综自旋弛豫
- DOI:10.1103/physrevb.105.195202
- 发表时间:2022-05
- 期刊:
- 影响因子:3.7
- 作者:Niaouris, Vasileios;Durnev, Mikhail V.;Linpeng, Xiayu;Viitaniemi, Maria L.;Zimmermann, Christian;Vishnuradhan, Aswin;Kozuka, Yusuke;Kawasaki, Masashi;Fu, Kai
- 通讯作者:Fu, Kai
Coherent Spin Preparation of Indium Donor Qubits in Single ZnO Nanowires
单 ZnO 纳米线中铟供体量子位的相干自旋制备
- DOI:10.1021/acs.nanolett.1c04156
- 发表时间:2022-03
- 期刊:
- 影响因子:10.8
- 作者:Viitaniemi, Maria L.;Zimmermann, Christian;Niaouris, Vasileios;D’Ambrosia, Samuel H.;Wang, Xingyi;Kumar, E. Senthil;Mohammadbeigi, Faezeh;Watkins, Simon P.;Fu, Kai
- 通讯作者:Fu, Kai
Coherence Properties of Shallow Donor Qubits in ZnO
ZnO 中浅施主量子位的相干特性
- DOI:10.1103/physrevapplied.10.064061
- 发表时间:2018-12
- 期刊:
- 影响因子:4.6
- 作者:Linpeng, Xiayu;Viitaniemi, Maria L.K.;Vishnuradhan, Aswin;Kozuka, Y.;Johnson, Cameron;Kawasaki, M.;Fu, Kai
- 通讯作者:Fu, Kai
Optical spin control and coherence properties of acceptor bound holes in strained GaAs
应变GaAs中受主束缚空穴的光学自旋控制和相干特性
- DOI:10.1103/physrevb.103.115412
- 发表时间:2020-12-13
- 期刊:
- 影响因子:0
- 作者:X. Linpeng;T. Karin;M. Durnev;M. Glazov;R. Schott;A. Wieck;A. Ludwig;K. Fu
- 通讯作者:K. Fu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kai-Mei Fu其他文献
Kai-Mei Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kai-Mei Fu', 18)}}的其他基金
Conference: 2024 Defects in Semiconductors GRC/GRS
会议:2024 年半导体缺陷 GRC/GRS
- 批准号:
2414677 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Semiconductor electron-nuclear spin qubits with optical access
具有光学访问功能的半导体电子-核自旋量子位
- 批准号:
2212017 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
EAGER: PHY-GRS: A Diamond Quantum Control Testbed
EAGER:PHY-GRS:钻石量子控制测试台
- 批准号:
2233120 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
GRC Defects in Semiconductors: Defect Formation, Characterization, Control and Utilization
半导体中的 GRC 缺陷:缺陷形成、表征、控制和利用
- 批准号:
2023837 - 财政年份:2020
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
NRT-QL: Accelerating Quantum-Enabled Technologies
NRT-QL:加速量子技术
- 批准号:
2021540 - 财政年份:2020
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
QLCI-CG: Institute for Hybrid Quantum Systems
QLCI-CG:混合量子系统研究所
- 批准号:
1936932 - 财政年份:2019
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
A Hybrid Photonics Device for Efficient Quantum Entanglement
用于高效量子纠缠的混合光子器件
- 批准号:
1807566 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Student Travel Support for the 11th Workshop on the Principles and Applications of Control in Quantum Systems, July 11-17, 2017 in Seattle, WA.
为 2017 年 7 月 11 日至 17 日在华盛顿州西雅图举行的第 11 届量子系统控制原理与应用研讨会提供学生旅行支持。
- 批准号:
1743298 - 财政年份:2017
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Student Travel Support for the 11th Workshop on the Principles and Applications of Control in Quantum Systems, July 11-17, 2017 in Seattle, WA.
为 2017 年 7 月 11 日至 17 日在华盛顿州西雅图举行的第 11 届量子系统控制原理与应用研讨会提供学生旅行支持。
- 批准号:
1743298 - 财政年份:2017
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Instrument Development: A nanoscale, unbleachable orientation and position sensor for biophysical imaging
仪器开发:用于生物物理成像的纳米级、不可漂白的方向和位置传感器
- 批准号:
1607869 - 财政年份:2016
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
相似国自然基金
磁控溅射等离子体中旋转辐条模的形成机理及其对电子和离子输运性质的影响
- 批准号:12305221
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用三维旋转电子衍射技术研究柔性分子筛材料的精细结构
- 批准号:22102177
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于电压调控自旋轨道矩效应的新一代自旋电子电路研究
- 批准号:61901017
- 批准年份:2019
- 资助金额:21.5 万元
- 项目类别:青年科学基金项目
激光激励下磁隧道结的热传导及自旋转移矩效应研究
- 批准号:11904343
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
微波腔模与拓扑绝缘体系统的耦合特性及其应用研究
- 批准号:11804155
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Realization of macroscopic coherence of electron spins with persistent spin helix state
实现具有持续自旋螺旋态的电子自旋宏观相干性
- 批准号:
20H02563 - 财政年份:2020
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
QLC: EAGER: Engineering Control into the Coherence Lifetimes of Entangled States Using Transition Metal Ions in Molecules with Electron Spins
QLC:EAGER:利用电子自旋分子中的过渡金属离子对纠缠态相干寿命进行工程控制
- 批准号:
1836569 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Study on dynamic nuclear polarization using photo-excited triplet electron spins for versatile NMR spectroscopy
利用光激发三重态电子自旋进行动态核极化研究,用于多功能核磁共振波谱
- 批准号:
18K05033 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Controlling electron spins in silicon/ Manipuler le spin des électrons dans le silicium
控制硅中的电子自旋/硅中电子自旋操纵器
- 批准号:
RGPIN-2014-04323 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Discovery Grants Program - Individual
Controlling electron spins in silicon/ Manipuler le spin des électrons dans le silicium
控制硅中的电子自旋/硅中电子自旋操纵器
- 批准号:
RGPIN-2014-04323 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Discovery Grants Program - Individual