NSF/MCB-BSF: Collaborative Research: Towards development of the structural determinants of the Glutamate receptor gating regulation by auxiliary membrane anchored proteins

NSF/MCB-BSF:合作研究:通过辅助膜锚定蛋白开发谷氨酸受体门控调节的结构决定因素

基本信息

  • 批准号:
    1818213
  • 负责人:
  • 金额:
    $ 53.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

High cognitive functions, including quantitative reasoning, learning and memory, originate in the human brain as a result of communication between complex networks of neurons connected through synapses. The key molecular element of this synaptic connection is the ionotropic glutamate receptor (iGluR), a protein in the postsynaptic neuronal membrane that conducts electrical signals to deliver messages from the presynaptic neuron. This process of neurotransmission is modulated by a variety of auxiliary proteins that bind to glutamate receptors. This project will illuminate how different auxiliary proteins interact with the glutamate receptor and with each other to initiate and modulate communication between neurons. This study enhances our knowledge of the molecular underpinnings of brain function. The research will involve undergraduate and graduate students, providing an educational environment and training opportunities at the forefront of brain research. Outreach activities involving local high schools and colleges are planned as well to promote diverse participation in STEM fields.It is increasingly recognized that the majority of proteins operate in cells within dynamically formed and re-formed complexes. This is especially important for signaling receptor proteins, such as ionotropic receptors in the brain that conduct electrical current through postsynaptic membranes to facilitate fast communication between neurons. The AMPA receptors (AMPAR) - a subtype of iGluRs - mediate the fastest excitatory neurotransmission in the mammalian brain. Correspondingly, regulation of AMPAR trafficking, localization and function is the key mechanism determining synaptic strength and plasticity that underlies high cognitive brain functions, such as learning and memory. It has been discovered recently that synaptic AMPARs function as complexes with a multitude of auxiliary proteins. This project aims to characterize molecular interactions of AMPARs with the cys-knot AMPAR modulating proteins (CKAMPs) and their interplay with the transmembrane AMPAR regulatory proteins (TARPs). A large collection of AMPAR and CKAMP mutants will be employed to identify interaction domains and specific residues involved in receptor regulation. Computational structural modeling including docking and molecular dynamics simulations will be employed to guide further determination of the protein-protein interfaces, which will be tested by electrophysiology experiments, and to generate and analyze candidate constructs for successful structure determination by cryo-EM. This collaborative effort, combining complementary approaches and continuous exchange of information and reagents, may provide the synergy needed to reach a new level of understanding of AMPAR regulation. In addition to providing fundamental insights into AMPAR gating and regulation, the results of this study will also serve as a roadmap for investigating AMPAR-mediated processes in synaptic physiology.This award was co-funded by the Division of Molecular and Cellular Biosciences, the Division of Integrative Organismal Systems, and the Rules of Life Venture Fund.This collaborative US/Israel project is supported by the US National Science Foundation and the Israeli Binational Science Foundation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
包括定量推理、学习和记忆在内的高级认知功能起源于人脑,是通过突触连接的复杂神经元网络之间进行通信的结果。这种突触连接的关键分子元件是离子型谷氨酸受体 (iGluR),它是突触后神经元膜中的一种蛋白质,可传导电信号以传递来自突触前神经元的信息。这一神经传递过程受到多种与谷氨酸受体结合的辅助蛋白的调节。该项目将阐明不同的辅助蛋白如何与谷氨酸受体以及彼此之间相互作用,以启动和调节神经元之间的通信。 这项研究增强了我们对大脑功能分子基础的了解。该研究将涉及本科生和研究生,提供脑研究前沿的教育环境和培训机会。还计划开展涉及当地高中和大学的外展活动,以促进 STEM 领域的多元化参与。 人们越来越认识到,大多数蛋白质在动态形成和重新形成的复合物内的细胞中发挥作用。这对于信号受体蛋白尤其重要,例如大脑中的离子型受体,它们通过突触后膜传导电流以促进神经元之间的快速通信。 AMPA 受体 (AMPAR) - iGluR 的一种亚型 - 介导哺乳动物大脑中最快的兴奋性神经传递。相应地,AMPAR 运输、定位和功能的调节是决定突触强度和可塑性的关键机制,而突触强度和可塑性是高级认知大脑功能(例如学习和记忆)的基础。最近发现突触 AMPAR 作为与多种辅助蛋白的复合物发挥作用。该项目旨在表征 AMPAR 与半胱氨酸结 AMPAR 调节蛋白 (CKAMP) 的分子相互作用以及它们与跨膜 AMPAR 调节蛋白 (TARP) 的相互作用。大量 AMPAR 和 CKAMP 突变体将用于鉴定相互作用结构域和参与受体调节的特定残基。包括对接和分子动力学模拟在内的计算结构模型将用于指导蛋白质-蛋白质界面的进一步确定,这些界面将通过电生理学实验进行测试,并生成和分析候选结构,以通过冷冻电镜成功确定结构。这种合作努力结合了互补方法以及信息和试剂的持续交换,可能会提供对 AMPAR 监管达到新水平理解所需的协同作用。除了提供对 AMPAR 门控和调节的基本见解外,这项研究的结果还将作为研究突触生理学中 AMPAR 介导的过程的路线图。该奖项由分子和细胞生物科学部、该司共同资助该奖项反映了 NSF 的法定使命,并得到了美国国家科学基金会和以色列两国科学基金会的支持。通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamical Mechanisms of Glutamate Receptor Gating and Sub-Conductance
谷氨酸受体门控和亚电导的动力学机制
  • DOI:
    10.1016/j.bpj.2019.11.3151
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kurnikova, Maria G.;Sakipov, Serzhan;Kottke, Christopher;Narangoda, Chamali;Scaranto, Jessica
  • 通讯作者:
    Scaranto, Jessica
AMPA Receptor Noncompetitive Inhibitors Occupy a Promiscuous Binding Site
AMPA 受体非竞争性抑制剂占据混杂的结合位点
  • DOI:
    10.1021/acschemneuro.9b00344
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Narangoda, Chamali;Sakipov, Serzhan N.;Kurnikova, Maria G.
  • 通讯作者:
    Kurnikova, Maria G.
Structural and functional insights into transmembrane AMPA receptor regulatory protein complexes
跨膜 AMPA 受体调节蛋白复合物的结构和功能见解
  • DOI:
    10.1085/jgp.201812264
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Twomey, Edward C.;Yelshanskaya, Maria V.;Sobolevsky, Alexander I.
  • 通讯作者:
    Sobolevsky, Alexander I.
Opening of glutamate receptor channel to subconductance levels
谷氨酸受体通道打开至亚电导水平
  • DOI:
    10.1038/s41586-022-04637-w
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Yelshanskaya, Maria V.;Patel, Dhilon S.;Kottke, Christopher M.;Kurnikova, Maria G.;Sobolevsky, Alexander I.
  • 通讯作者:
    Sobolevsky, Alexander I.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Kurnikova其他文献

Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance.
三维泊松-能斯特-普朗克理论研究:膜静电对短杆菌肽 A 通道电导的影响。
  • DOI:
    10.1016/s0006-3495(00)76275-8
  • 发表时间:
    2000-07-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Alfredo E. Cárdenas;R. Coalson;Maria Kurnikova
  • 通讯作者:
    Maria Kurnikova
A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel.
三维 Poisson-Nernst-Planck 理论的晶格弛豫算法,应用于通过短杆菌肽 A 通道的离子传输。
  • DOI:
    10.1016/s0006-3495(99)77232-2
  • 发表时间:
    1999-02-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Maria Kurnikova;R. Coalson;Peter Graf;Abraham Nitzan
  • 通讯作者:
    Abraham Nitzan
Spontaneous field potentials in the glomeruli of the olfactory bulb: The leading role of juxtaglomerular cells
嗅球肾小球的自发场电位:肾小球旁细胞的主导作用
  • DOI:
    10.1016/j.neuroscience.2006.05.068
  • 发表时间:
    2006-09-29
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Sergei Karnup;A. Hayar;M. T. Shipley;Maria Kurnikova
  • 通讯作者:
    Maria Kurnikova
Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels
计算通过生物离子通道的电流的泊松-能斯特-普朗克理论方法
  • DOI:
    10.1109/tnb.2004.842495
  • 发表时间:
    2005-03-07
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    R. Coalson;Maria Kurnikova
  • 通讯作者:
    Maria Kurnikova

Maria Kurnikova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria Kurnikova', 18)}}的其他基金

Collaborative Research: Geometric Elucidation of Supramolecular Assembly and Allostery with Experimental Validation
合作研究:超分子组装和变构的几何阐明与实验验证
  • 批准号:
    1563291
  • 财政年份:
    2016
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Continuing Grant

相似国自然基金

选择性保护式微型断路器的节点模型智能体建模及非线性动力学特性优化研究
  • 批准号:
    51307011
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
单节合型胆红素(MCB)在胆结石生成上的作用
  • 批准号:
    39070790
  • 批准年份:
    1990
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF/MCB-BSF: De novo design of minimalistic light-switchable protein binding domains
NSF/MCB-BSF:简约光可切换蛋白结合域的从头设计
  • 批准号:
    2306190
  • 财政年份:
    2023
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Standard Grant
NSF/MCB-BSF: De novo design of minimalistic light-switchable protein binding domains
NSF/MCB-BSF:简约光可切换蛋白结合域的从头设计
  • 批准号:
    2306190
  • 财政年份:
    2023
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF/MCB-BSF: The effect of transcription factor binding on UV lesion accumulation
合作研究:NSF/MCB-BSF:转录因子结合对紫外线损伤积累的影响
  • 批准号:
    2324614
  • 财政年份:
    2023
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF/MCB-BSF: The effect of transcription factor binding on UV lesion accumulation
合作研究:NSF/MCB-BSF:转录因子结合对紫外线损伤积累的影响
  • 批准号:
    2324615
  • 财政年份:
    2023
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Standard Grant
NSF/MCB-BSF: Probing cellular surplus in single bacterial cells to understand concerted controls of cell growth and adaptation
NSF/MCB-BSF:探测单个细菌细胞中的细胞盈余,以了解细胞生长和适应的协调控制
  • 批准号:
    2309595
  • 财政年份:
    2023
  • 资助金额:
    $ 53.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了