III: Small: Collaborative Research: Summarizing Heterogeneous Crowdsourced & Web Streams Using Uncertain Concept Graphs

III:小:协作研究:异构众包总结

基本信息

  • 批准号:
    1815459
  • 负责人:
  • 金额:
    $ 25.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Ubiquitous access to mobile and web technologies enables the public to share valuable information about their surroundings anywhere and anytime. For example, during an emergency or crisis people report needs from affected areas via social media as an alternative to the traditional 911 calls. This can be valuable information for a range of emergency service officials. However, the utilization of this data poses several computational challenges as it is generated in real time, is heterogeneous, highly unstructured, redundant, and sometimes unreliable. The project investigates new summarization approaches to handle noisy, unstructured data streams from multiple web sources in real time while accounting for the possibility of untrustworthy information, so that they can be fed into decision support systems of public services in a structured and machine-readable format. In addition, the project develops and validates robust decision support systems for allocating critical resources to needed areas based on the structured summary reports. The evaluation plan includes collaboration with emergency responders and the communities they serve. The broader impacts of this research include the design of a generic methodology to extract, integrate, and summarize structured information from big data streams on the web for helping public services of future smart cities. The research team plans to share simulated datasets with an open source system for real-time decision support during emergency response exercises. This can assist in workforce training and also, help design novel educational projects of data science for social good. Formally, this research project investigates the theories behind a novel knowledge representation called Uncertain Concept Graph. The graph contains heterogeneous nodes based on key concepts of an application domain (e.g., regions, incidents, and information sources during a disaster). The graph has heterogeneous edges connecting these concept nodes, based on the inference of concept relationships using the extracted information from data streams (e.g., Twitter and news sources). The structure of the graph evolves over time and both nodes and edges can be added, deleted, or updated. An equivalent Bayesian Network is derived from the Uncertain Concept Graph describing the dependencies between the events captured in the graph at a given time instance. Based on the relationship edges in a graph state and the constructed Bayesian Network, an action recommendation system is created to support an application domain task (e.g., dispatching ambulance resources to incident-specific regions). To ensure robustness, this project develops and validates a novel anomaly identification and diagnosis approach using mode similarity to assess the correctness of current state of concept nodes and their relationships in the Uncertain Concept Graph at any time. The research team uses historical datasets of recent disasters to construct the graph and develop a demo system for domain evaluation, in order to recommend actions in emergency response for the city emergency services. The investigators are including the lessons learned and methodologies developed in their respective course curricula.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无处不在的移动和网络技术使公众能够随时随地分享有关周围环境的有价值的信息。例如,在紧急情况或危机期间,人们通过社交媒体报告受影响地区的需求,作为传统 911 电话的替代方案。这对于一系列紧急服务官员来说可能是有价值的信息。然而,这些数据的利用带来了一些计算挑战,因为它是实时生成的、异构的、高度非结构化的、冗余的,有时甚至不可靠。该项目研究了新的汇总方法,以实时处理来自多个网络源的嘈杂、非结构化数据流,同时考虑到不可信信息的可能性,以便它们能够以结构化和机器可读的格式输入公共服务的决策支持系统。此外,该项目还开发并验证了强大的决策支持系统,用于根据结构化摘要报告将关键资源分配到所需领域。评估计划包括与应急响应人员及其服务的社区的合作。这项研究的更广泛影响包括设计一种通用方法,从网络大数据流中提取、整合和总结结构化信息,以帮助未来智慧城市的公共服务。研究团队计划与开源系统共享模拟数据集,以便在应急响应演习期间提供实时决策支持。这可以帮助劳动力培训,也可以帮助设计新颖的数据科学教育项目,以造福社会。从形式上讲,该研究项目研究了一种称为“不确定概念图”的新颖知识表示背后的理论。该图包含基于应用程序域的关键概念(例如灾难期间的区域、事件和信息源)的异构节点。该图具有连接这些概念节点的异构边,基于使用从数据流(例如 Twitter 和新闻源)中提取的信息进行的概念关系推断。图的结构随着时间的推移而演变,节点和边都可以添加、删除或更新。等效的贝叶斯网络源自不确定概念图,描述了给定时间实例中图中捕获的事件之间的依赖关系。基于图状态中的关系边和构建的贝叶斯网络,创建动作推荐系统来支持应用程序域任务(例如,将救护车资源调度到特定事件区域)。为了确保鲁棒性,该项目开发并验证了一种新颖的异常识别和诊断方法,使用模式相似性来随时评估不确定概念图中概念节点及其关系的当前状态的正确性。研究团队利用近期灾害的历史数据集构建图表并开发用于领域评估的演示系统,以便为城市应急服务部门的应急响应行动提供建议。调查人员将吸取的经验教训和开发的方法纳入各自的课程中。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling and mitigating human annotation errors to design efficient stream processing systems with human-in-the-loop machine learning
建模并减少人工注释错误,以通过人机循环机器学习设计高效的流处理系统
  • DOI:
    10.1016/j.ijhcs.2022.102772
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Pandey, Rahul;Purohit, Hemant;Castillo, Carlos;Shalin, Valerie L.
  • 通讯作者:
    Shalin, Valerie L.
A Review of Incident Prediction, Resource Allocation, and Dispatch Models for Emergency Management
应急管理的事件预测、资源分配和调度模型回顾
  • DOI:
    10.1016/j.aap.2021.106501
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Mukhopadhyay, Ayan;Pettet, Geoffrey;Vazirizade, Sayyed Mohsen;Lu, Di;Jaimes, Alejandro;Said, Said El;Baroud, Hiba;Vorobeychik, Yevgeniy;Kochenderfer, Mykel;Dubey, Abhishek
  • 通讯作者:
    Dubey, Abhishek
Knowledge Graphs to Empower Humanity-Inspired AI Systems
知识图谱赋能受人性启发的人工智能系统
  • DOI:
    10.1109/mic.2020.3013683
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Purohit, Hemant;Shalin, Valerie L.;Sheth, Amit P.;Sheth, Amit
  • 通讯作者:
    Sheth, Amit
EMAssistant: ​A Learning Analytics System for Social and Web Data Filtering to Assist Trainees and Volunteers of Emergency Services
EMAssistant:用于社交和网络数据过滤的学习分析系统,以协助紧急服务的学员和志愿者
Diversity-Based Generalization for Neural Unsupervised Text Classification under Domain Shift
域转移下神经无监督文本分类的基于多样性的泛化
  • DOI:
  • 发表时间:
    2020-02-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jitin Krishnan;Hemant Purohit;H. Rangwala
  • 通讯作者:
    H. Rangwala
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hemant Purohit其他文献

EVO-LYZER: Social Media Mining System for Evolving Communication Behavior Analytics to Aid Climate Change Programs
EVO-LYZER:社交媒体挖掘系统,用于发展通信行为分析以帮助气候变化项目
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasas Senarath;Amanda C. Borth;Edward Maibach;Hemant Purohit
  • 通讯作者:
    Hemant Purohit
Enhancing Cohesion and Coherence of Fake Text to Improve Believability for Deceiving Cyber Attackers
增强虚假文本的凝聚力和连贯性,以提高欺骗网络攻击者的可信度
On the Role of Social Identity and Cohesion in Characterizing Online Social Communities
论社会认同和凝聚力在表征在线社交社区中的作用
  • DOI:
    10.4236/ojbm.2021.93073
  • 发表时间:
    2012-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hemant Purohit;Yiye Ruan;David Fuhry;S. Parthasarathy;A. Sheth
  • 通讯作者:
    A. Sheth
Classifying User Types on Social Media to inform Who-What-Where Coordination during Crisis Response
对社交媒体上的用户类型进行分类,以告知危机应对期间的人员、内容和地点协调
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hemant Purohit;J. Chan
  • 通讯作者:
    J. Chan
Twitris+: Social Media Analytics Platform for Effective Coordination
Twitris:用于有效协调的社交媒体分析平台
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. A. Smith;A. Sheth;Ashutosh Jadhav;Hemant Purohit;Lu Chen;Michael Cooney;Pavan Kapanipathi;P. Anantharam;Pramod Koneru;Wenbo Wang
  • 通讯作者:
    Wenbo Wang

Hemant Purohit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hemant Purohit', 18)}}的其他基金

EAGER: DCL: SaTC: EIC: Inclusive-ScamBuster: Inclusive Scam Detection Methods for Social Media to Design Assistive Tools for Protecting Individuals with Developmental Disabilities
EAGER:DCL:SaTC:EIC:Inclusive-ScamBuster:社交媒体的包容性诈骗检测方法,用于设计保护发育障碍人士的辅助工具
  • 批准号:
    2210107
  • 财政年份:
    2022
  • 资助金额:
    $ 25.97万
  • 项目类别:
    Standard Grant
RAPID/Collaborative Research: Human-AI Teaming for Big Data Analytics to Enhance Response to the COVID-19 Pandemic
快速/协作研究:人类与人工智能合作进行大数据分析以增强对 COVID-19 大流行的响应
  • 批准号:
    2029719
  • 财政年份:
    2020
  • 资助金额:
    $ 25.97万
  • 项目类别:
    Standard Grant
CRII: CHS: Mining Intentions on Social Media to Enhance Situational Awareness of Crisis Response Organizations
CRII:CHS:挖掘社交媒体意图,增强危机应对组织的态势感知
  • 批准号:
    1657379
  • 财政年份:
    2017
  • 资助金额:
    $ 25.97万
  • 项目类别:
    Standard Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 25.97万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 25.97万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 25.97万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 25.97万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 25.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了