Entanglement Physics of Quantum f-electron Materials
量子f电子材料的纠缠物理
基本信息
- 批准号:1830707
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical research and education in condensed matter physics, in the subfield of f-electron physics and quantum matter.The behavior of matter on atomic scales is governed by quantum mechanics, which describes the motion of particles as a wave, evolving according to the Schrodinger wave equation. While the application of this equation to isolated electrons is fully understood, the corresponding many-body version of this equation that governs the collective quantum behavior of electrons inside matter is far too complex to be solved in detail. The astronomical scale of this complexity may be grasped by noting that the number of electrons in a pound of iron is larger than the number of stars in the known universe.One of the strange manifestations of quantum mechanics is a phenomenon known as entanglement, whereby remote electrons in a material intimately correlate their motion. The unexpected collective behavior of electrons that results from this entanglement has the capacity to endow quantum matter with emergent properties, such as magnetism, superconductivity, or superfluidity, and many more that are presumably not yet discovered. The quest to understand and manipulate these emergent properties, and to relate them to the underlying quantum mechanics is a key goal of modern condensed matter physics.The award supports research in the area of f-electron materials, a unique class of metals that can be fine-tuned to the brink of magnetism where they develop a special quantum state called a "Quantum Critical Point". Quantum critical points can be thought of as a kind of electronic stem cell - a state of matter that can easily transform itself into a broad class of novel quantum phases, such as unconventional superconductors. By developing a new mathematical description of these quantum critical points and the phases they can transform into, the PI aims to gain a new understanding of the physics of quantum materials.Graduate students and postdocs will be involved in an essential way in the research, and will be mentored and trained in a broad range of theoretical techniques. The PI also plans to write a popular book introducing the frontier of quantum condensed matter physics to non-experts. TECHNICAL SUMMARYThis award supports theoretical research and education in condensed matter physics, in the subfield of f-electron physics. The research has three main subheadings: 1) New approach to quantum criticality: Using a new Schwinger boson method, and working in conjunction with experimentalists, the research team will develop a theory of ferromagnetic quantum criticality in heavy-electron materials. This work will be extended to antiferromagnets and will be used to compute the generalized phase diagram of heavy fermions. The research team will develop a theory for the co-existence of magnetism and the Kondo effect. By extending early work of Larkin and Pikin, the research will develop a theory for the quantum annealing of finite-temperature first-order phase transitions into quantum critical points at absolute zero. 2) Analytic-computational approach to entanglement & novel order in rare-earth materials: Working with theorists at the Flatiron Institute, New York, the research team will apply Matrix Product State approaches to simple one- and two-dimensional Kondo lattices, focusing on the low-entanglement case of the Kondo insulator, using these methods to establish and explore the composite nature of heavy fermions.3) A new approach to Raman and Photoemission phenomenology: Generalizing the theory of optical lattices to crystal fields, the research will develop a theory of the Raman interaction of light with crystal-field levels in f-electron materials. A new criterion for measuring the degree of localization of f-electrons using angle-resolved and core-level x-ray photoemission will be developed.Graduate students and postdocs will be involved in an essential way in the research, and will be mentored and trained in a broad range of theoretical techniques. The PI also plans to write a popular book introducing the frontier of quantum condensed matter physics to non-experts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持F-电子物理学和量子问题的子场中的理论研究和教育。原子量表的行为由量子力学支配,该量子机制将粒子的运动描述为波动作为波的运动,根据Schrodinger Wave方程的发展。尽管该方程式在孤立的电子中的应用已充分理解,但该方程的相应多体版本控制了物质内部电子的集体量子行为太复杂了,无法详细解决。可以通过指出一磅铁中的电子数量大于已知宇宙中恒星数的数量,可以掌握这种复杂性的天文尺度。量子力学的奇怪表现是一种称为纠缠的现象,其中材料中的远程电子与他们的运动密切相关。由于这种纠缠而导致的电子的意外集体行为具有赋予量子物质的能力,例如磁性,超导性或超流量,以及可能尚未发现的更多。寻求理解和操纵这些新兴特性,并将它们与潜在的量子力学联系起来是现代冷凝物理物理学的关键目标。该奖项支持F-电子材料领域的研究,这是一种独特的金属,可以微调,可以对磁性的边缘进行微调,从而在其中开发了一个特殊的量子状态,它们称为“量子”量子的特殊量子。量子临界点可以被认为是一种电子干细胞 - 一种物质的状态,可以很容易地将自身转变为一类新型的新型量子相,例如非常规超导体。通过对这些量子关键点及其可以转化为这些量子的阶段进行新的数学描述,PI旨在获得对量子材料物理学的新理解。研究生和博士学位将在研究中以一种基本的方式参与,并将受到广泛的理论技术的指导和培训。 PI还计划写一本受欢迎的书,将量子凝结物理学的边界介绍给非专家。技术摘要这一奖项支持F-Electron Physics子领域的凝聚态物理学的理论研究和教育。 这项研究具有三个主要小节:1)量子关键的新方法:使用新的Schwinger Boson方法,并与实验者合作,研究团队将在重型电子材料中发展出铁磁量子关键的理论。这项工作将扩展到抗铁磁铁,并将用于计算重型费米子的广义相图。研究小组将开发一种关于磁性和近代效应共存的理论。通过扩展Larkin和Pikin的早期工作,该研究将开发出一种理论,用于将有限温度的一阶相变到绝对零的量子临界点。 2) Analytic-computational approach to entanglement & novel order in rare-earth materials: Working with theorists at the Flatiron Institute, New York, the research team will apply Matrix Product State approaches to simple one- and two-dimensional Kondo lattices, focusing on the low-entanglement case of the Kondo insulator, using these methods to establish and explore the composite nature of heavy fermions.3) A new approach to Raman and Photoemission现象学:将光学晶格的理论概括为晶体场,该研究将开发出光电子材料中光与晶体水平的拉曼相互作用的理论。将开发使用角度分辨和核心X射线光发射的新标准,用于衡量F-电子的定位程度。研究生和博士学位将以研究的基本方式参与,并将在广泛的理论技术中进行指导和培训。 PI还计划撰写一本流行的书,将量子凝结物理学的边界介绍给非专家。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strange-metal behaviour in a pure ferromagnetic Kondo lattice
纯铁磁近藤晶格中的奇怪金属行为
- DOI:10.1038/s41586-020-2052-z
- 发表时间:2019-07
- 期刊:
- 影响因子:64.8
- 作者:Shen Bin;Zhang Yongjun;Komijani Yashar;Nicklas Michael;Borth Robert;Wang An;Chen Ye;Nie Zhiyong;Li Rui;Lu Xin;Lee Hanoh;Smidman Michael;Steglich Frank;Coleman Piers;Yuan Huiqiu
- 通讯作者:Yuan Huiqiu
Large- N approach to the two-channel Kondo lattice
- DOI:10.1103/physrevb.101.075133
- 发表时间:2019-11
- 期刊:
- 影响因子:3.7
- 作者:Ari Wugalter;Y. Komijani;P. Coleman
- 通讯作者:Ari Wugalter;Y. Komijani;P. Coleman
Luttinger sum rules and spin fractionalization in the SU( N ) Kondo lattice
SU(N)Kondo 晶格中的 Luttinger 和规则与自旋分数化
- DOI:10.1103/physrevresearch.3.033284
- 发表时间:2021
- 期刊:
- 影响因子:4.2
- 作者:Hazra, Tamaghna;Coleman, Piers
- 通讯作者:Coleman, Piers
Observation of a critical charge mode in a strange metal
奇怪金属中临界充电模式的观察
- DOI:10.1126/science.abc4787
- 发表时间:2023
- 期刊:
- 影响因子:56.9
- 作者:Kobayashi Hisao;Sakaguchi Yui;Kitagawa Hayato;Oura Momoko;Ikeda Shugo;Kuga Kentaro;Suzuki Shintaro;Nakatsuji Satoru;Masuda Ryo;Kobayashi Yasuhiro;Seto Makoto;Yoda Yoshitaka;Tamasaku Kenji;Komijani Yashar;Chandra Premala;Coleman Piers
- 通讯作者:Coleman Piers
Triplet resonating valence bond theory and transition metal chalcogenides
- DOI:10.1103/physrevb.105.075142
- 发表时间:2021-09
- 期刊:
- 影响因子:3.7
- 作者:E. König;Y. Komijani;P. Coleman
- 通讯作者:E. König;Y. Komijani;P. Coleman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piers Coleman其他文献
Theory perspective: SCES ’05 Vienna
理论视角:SCES ’05 维也纳
- DOI:
10.1016/j.physb.2006.01.530 - 发表时间:
2005 - 期刊:
- 影响因子:2.8
- 作者:
Piers Coleman - 通讯作者:
Piers Coleman
What is the fate of the heavy electron at a quantum critical point
重电子在量子临界点的命运是什么
- DOI:
10.1016/s0921-4526(01)01342-4 - 发表时间:
2001 - 期刊:
- 影响因子:2.8
- 作者:
Piers Coleman;C. Pépin - 通讯作者:
C. Pépin
Sum rule for the optical hall angle
光学霍尔角的求和法则
- DOI:
10.1103/physrevlett.78.1572 - 发表时间:
1996 - 期刊:
- 影响因子:8.6
- 作者:
H. Drew;Piers Coleman - 通讯作者:
Piers Coleman
Quantum criticality and the break-up of the Kondo pseudo-potential
量子临界性和近藤赝势的破裂
- DOI:
10.1016/j.physb.2007.10.312 - 发表时间:
2007 - 期刊:
- 影响因子:2.8
- 作者:
Eran Lebanon;Piers Coleman - 通讯作者:
Piers Coleman
Superconductivity due to co-operative Kondo effect in Pu 115's
- DOI:
10.1016/j.physb.2007.10.063 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:
- 作者:
Maxim Dzero;Piers Coleman - 通讯作者:
Piers Coleman
Piers Coleman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Piers Coleman', 18)}}的其他基金
2018 Correlated Electron Systems GRC/GRS
2018相关电子系统GRC/GRS
- 批准号:
1833673 - 财政年份:2018
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Emergence in Disordered, Interacting and Living Systems a the Aspen Center August 12, 2017
阿斯彭中心无序、相互作用和生命系统的出现 2017 年 8 月 12 日
- 批准号:
1744254 - 财政年份:2017
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Local Moment and Heavy Fermion Physics
局域矩和重费米子物理
- 批准号:
1309929 - 财政年份:2013
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
PWA90: Emergent Frontiers of Condensed Matter will be held at Princeton University, Princeton, NJ, 14-15 December 2013
PWA90:凝聚态物质的新兴前沿将于 2013 年 12 月 14 日至 15 日在新泽西州普林斯顿的普林斯顿大学举行
- 批准号:
1401789 - 财政年份:2013
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Local Moment and Heavy Fermion Physics
局域矩和重费米子物理
- 批准号:
0907179 - 财政年份:2009
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Local Moment and Heavy Fermion Physics
局域矩和重费米子物理
- 批准号:
0605935 - 财政年份:2006
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Local Moment and Heavy Fermion Physics
局域矩和重费米子物理
- 批准号:
0312495 - 财政年份:2003
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
U.S.-Hungary Materials Theory Research on Strongly Correlated and Mesoscopic Systems
美匈强相关介观系统材料理论研究
- 批准号:
0130446 - 财政年份:2002
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Local Moment and Heavy Fermion Physics
局域矩和重费米子物理
- 批准号:
9614999 - 财政年份:1996
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
相似国自然基金
基于腔QED系统的简单量子纠缠网络的物理实现
- 批准号:12147146
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
基于纠缠光源的量子态探测的物理机制研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
全息量子相变与量子信息
- 批准号:11905083
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
里德堡原子系统中的新物理及其在量子信息中的应用
- 批准号:11804308
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
Yang-Baxter方程物理系统的量子纠缠与量子模拟研究
- 批准号:11705004
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A test on quantum entanglement with Bell inequality violation detection at ultimately high energy collisions at LHC
大型强子对撞机最终高能碰撞中贝尔不等式违规检测的量子纠缠测试
- 批准号:
22H01235 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum matters and their entanglement structures
量子物质及其纠缠结构
- 批准号:
19K03863 - 财政年份:2019
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of topological order and entanglement in strongly correlated quantum spin systems
强相关量子自旋系统的拓扑序和纠缠研究
- 批准号:
17K05564 - 财政年份:2017
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on S-matrix and string theory for quantum entanglement
量子纠缠的S矩阵和弦理论研究
- 批准号:
17K05421 - 财政年份:2017
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometrical quantum optics for spontaneous quantum entanglement generation beween matters
用于物质间自发量子纠缠生成的几何量子光学
- 批准号:
16K13818 - 财政年份:2016
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research