MRI: Acquisition of a 3-D Nanolithography System

MRI:获取 3D 纳米光刻系统

基本信息

  • 批准号:
    1828480
  • 负责人:
  • 金额:
    $ 61.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Three-dimensional (3D) printing has created a revolution in rapid-prototyping and on-demand creation of parts. This technology can enable on-demand manufacturing of complex structures that could not be built using conventional methods. Current 3D printing systems range from hobbyist desktop systems to industrial prototyping and manufacturing systems. Most instruments are limited to minimum feature sizes of about 100 microns due to limitations in materials, nozzles, or accuracy in positioning hardware. This project will acquire an advanced 3D nanolithography system that utilizes two-photon polymerization lithography from a near-infrared pulsed laser. With this system, it is possible to extend 3D printing to the nanoscale, allowing for sub-micron 3D feature size across cubic-centimeter volumes. The availability of on-demand nano-manufacturing capability will broaden the participation of research groups to other disciplines not familiar with this type of technology. For example, the proposed instrument will support efforts in rock physics for energy extraction, prevention of bio-fouling in the food industry, brain-machine interfaces, miniaturized medical devices, and embedded physiological sensors. In addition, this project will create coursework modules at both University of Utah and Salt Lake Community College to utilize the proposed instrument. As part of this project, an "expert user corps" of Ph.D. students will be trained on the system, an experience that goes well-beyond that of a typical program. A meeting is planned during the second year of the project for users to share lessons learned, best practices, and new techniques in this growing user community. The 3D nanolithography system will support a number of on-going and proposed cross-disciplinary collaborative research directions. For example, the system will play a fundamental role in the understanding of solid/fluid interfacial properties across multiple application areas, including digital rock physics for energy storage/extraction, optimizing ultrafiltration membranes used in the food industry, study of micro-organism locomotion, and study of microvascular structures. These are complex problems, all of which involve the integration of state-of-the-art microscopic imaging of natural samples, physics-based modeling, and creation of hierarchical synthetic nanostructured materials of various levels of physical and chemical heterogeneities to validate multiscale models that are then used in application development. The 3D nanolithography system is the ideal tool to create these synthetic material models with which detailed experimental characterization can be performed. In the neural interfaces area, the 3D nanolithography tool will facilitate the creation of new optical and electrical interfaces to the brain and peripheral nerves, taking full advantage of highly-flexible 3D patterning capabilities to customize these interfaces to the implant locations and for acute or chronic applications. The tool will enable the development of a number of other embedded biomedical devices, including micro-scaffolds for self-regulated pacemakers, and miniaturized sensors for continuous physiological monitoring based upon development of new photo-responsive polymer materials. Additional impact areas include nanofluidic devices for bioanalytical systems, laser-based 3D printing of metals, nanoscale near-field electrospinning, nanoscale composite materials, and novel two-dimensional (2D) materials for active terahertz-frequency devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
三维 (3D) 打印在快速原型制作和按需创建零件方面引发了一场革命。该技术可以按需制造传统方法无法建造的复杂结构。当前的 3D 打印系统范围从业余爱好者桌面系统到工业原型设计和制造系统。由于材料、喷嘴或定位硬件精度的限制,大多数仪器的最小特征尺寸仅限于约 100 微米。该项目将获得先进的 3D 纳米光刻系统,该系统利用近红外脉冲激光的双光子聚合光刻。借助该系统,可以将 3D 打印扩展到纳米尺度,从而实现立方厘米体积内的亚微米 3D 特征尺寸。按需纳米制造能力的可用性将把研究小组的参与范围扩大到不熟悉此类技术的其他学科。例如,拟议的仪器将支持岩石物理学领域的能量提取、防止食品工业中的生物污染、脑机接口、小型化医疗设备和嵌入式生理传感器等方面的努力。此外,该项目还将在犹他大学和盐湖社区学院创建课程模块,以利用拟议的工具。作为该项目的一部分,博士的“专家用户团队”。学生将接受该系统的培训,这种体验远远超出了典型的项目。计划在项目的第二年举行一次会议,让用户分享在这个不断增长的用户社区中学到的经验教训、最佳实践和新技术。 3D纳米光刻系统将支持许多正在进行的和拟议的跨学科合作研究方向。例如,该系统将在理解多个应用领域的固体/流体界面特性方面发挥基础作用,包括用于能量存储/提取的数字岩石物理、优化食品工业中使用的超滤膜、微生物运动的研究、以及微血管结构的研究。这些都是复杂的问题,所有这些都涉及自然样品的最先进的显微成像、基于物理的建模以及创建不同级别的物理和化学异质性的分层合成纳米结构材料的集成,以验证多尺度模型然后用于应用​​程序开发。 3D 纳米光刻系统是创建这些合成材料模型的理想工具,可以使用该模型进行详细的实验表征。在神经接口领域,3D 纳米光刻工具将有助于创建大脑和周围神经的新光学和电气接口,充分利用高度灵活的 3D 图案化功能,根据植入位置以及急性或慢性疾病定制这些接口。应用程序。该工具将有助于开发许多其他嵌入式生物医学设备,包括用于自调节起搏器的微型支架,以及基于新型光响应聚合物材料开发的用于连续生理监测的微型传感器。其他影响领域包括用于生物分析系统的纳米流体设备、基于激光的金属 3D 打印、纳米级近场静电纺丝、纳米级复合材料以及用于有源太赫兹频率设备的新型二维 (2D) 材料。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Broadband lightweight flat lenses for long-wave infrared imaging
Ultra-compact integrated photonic devices enabled by machine learning and digital metamaterials
由机器学习和数字超材料实现的超紧凑集成光子器件
  • DOI:
    10.1364/osac.417729
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Banerji, Sourangsu;Majumder, Apratim;Hamrick, Alex;Menon, Rajesh;Sensale-Rodriguez, Berardi
  • 通讯作者:
    Sensale-Rodriguez, Berardi
Ultra-thin near infrared camera enabled by a flat multi-level diffractive lens
  • DOI:
    10.1364/ol.44.005450
  • 发表时间:
    2019-11-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Banerji, Sourangsu;Meem, Monjurul;Menon, Rajesh
  • 通讯作者:
    Menon, Rajesh
Impact of fabrication errors and refractive index on multilevel diffractive lens performance
  • DOI:
    10.1038/s41598-020-71480-2
  • 发表时间:
    2020-09-03
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Banerji, Sourangsu;Cooke, Jacqueline;Sensale-Rodriguez, Berardi
  • 通讯作者:
    Sensale-Rodriguez, Berardi
Imaging from the visible to the longwave infrared wavelengths via an inverse-designed flat lens
  • DOI:
    10.1364/oe.423764
  • 发表时间:
    2021-06-21
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Meem, Monjurul;Majumder, Apratim;Menon, Rajesh
  • 通讯作者:
    Menon, Rajesh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Blair其他文献

Steven Blair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Blair', 18)}}的其他基金

Optrode array for optical neural stimulation and recording
用于光学神经刺激和记录的光极阵列
  • 批准号:
    1310654
  • 财政年份:
    2013
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
Novel optical properties of metallic nanocavities
金属纳米腔的新颖光学特性
  • 批准号:
    0622225
  • 财政年份:
    2006
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
CAREER: Integrated-Optic Nanoparticle Biosensor Arrays
职业:集成光学纳米颗粒生物传感器阵列
  • 批准号:
    0134548
  • 财政年份:
    2002
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant

相似国自然基金

氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
  • 批准号:
    82373410
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Galectin-9促进非小细胞肺癌奥希替尼获得性耐药及免疫逃逸的作用和机制研究
  • 批准号:
    82373361
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向谷氨酰胺转运体ASCT2逆转食管鳞癌对CDK4/6抑制剂获得性耐药分子机制研究
  • 批准号:
    82373360
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXK2-KCNJ2轴在阿帕替尼获得性耐药的甲状腺未分化癌中重塑细胞焦亡微环境的机制研究
  • 批准号:
    82303864
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
  • 批准号:
    2320636
  • 财政年份:
    2023
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
MRI: Acquisition of the NanoFrazor - a unique AFM-based nanolithography tool to support multidisciplinary research and promote nanoscience in South Carolina and beyond
MRI:收购 NanoFrazor - 一种独特的基于 AFM 的纳米光刻工具,用于支持多学科研究并促进南卡罗来纳州及其他地区的纳米科学
  • 批准号:
    1920117
  • 财政年份:
    2019
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
MRI-R2: Acquisition of a Versatile Electron Beam Nanolithography Instrument for Patterning on Planar and Curved Surfaces
MRI-R2:购买多功能电子束纳米光刻仪器,用于在平面和曲面上进行图案化
  • 批准号:
    0959764
  • 财政年份:
    2010
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Nanolithography Equipment
MRI:购置纳米光刻设备
  • 批准号:
    0922614
  • 财政年份:
    2009
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Atomic Force Microscope Nanolithography DPN 5000 System
MRI:购买原子力显微镜纳米光刻 DPN 5000 系统
  • 批准号:
    0923021
  • 财政年份:
    2009
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了